200 research outputs found
Stable Patterns of Gene Expression Regulating Carbohydrate Metabolism Determined by Geographic Ancestry
Background: Individuals of African descent in the United States suffer disproportionately from diseases with a metabolic etiology (obesity, metabolic syndrome, and diabetes), and from the pathological consequences of these disorders (hypertension and cardiovascular disease). Methodology/Principal Findings: Using a combination of genetic/genomic and bioinformatics approaches, we identified a large number of genes that were both differentially expressed between American subjects self-identified to be of either African or European ancestry and that also contained single nucleotide polymorphisms that distinguish distantly related ancestral populations. Several of these genes control the metabolism of simple carbohydrates and are direct targets for the SREBP1, a metabolic transcription factor also differentially expressed between our study populations. Conclusions/Significance: These data support the concept of stable patterns of gene transcription unique to a geographic ancestral lineage. Differences in expression of several carbohydrate metabolism genes suggest both genetic and transcriptional mechanisms contribute to these patterns and may play a role in exacerbating the disproportionate levels o
More Than Forty Prominent Economists Urge Supreme Court to Allow EPA to Consider Costs and Consequences of Clean Air Regulations
More than forty prominent economists filed a Friend of the Court brief with the Supreme Court, asking the justices to overturn a lower court ruling that the Environmental Protection Agency (EPA) may not take into account the costs of regulations when setting standards under the Clean Air Act. Calling the lower court ruling "economically unsound," the economists argued that the EPA "should be allowed to consider explicitly the full consequences" of regulatory decisions, including costs, benefits, and any other relevant facts. In their Amici Curiae brief, the economists contended that the "plain aim" of the Clean Air Act "is protecting the public health&quo.t; That aim, they said, "is unlikely to be achieved without, at least, an implicit balancing of benefits and costs." The Supreme Court filing was organized by the American Enterprise Institute-Brookings Joint Center for Regulatory Studies. The bipartisan group of economists signing the brief included three Nobel laureates, seven former chairmen of the President's Council of Economic Advisers, and two former directors of the White House Office of Management and Budget. The case, American Trucking Association v. Carol M. Browner, Administrator of the Environmental Protection Agency , was appealed to the Supreme Court after a Federal Court in Washington D.C. ruled that the EPA was not permitted to consider costs in setting regulatory standards for enforcing the Clean Air Act. "We believe it would be imprudent for the EPA to ignore costs totally, particularly given their magnitude in this case," the economists stated in the brief. "The EPA estimates that those [clean air] standards could cost on the order of $50 billion annually." The brief argued, "Not considering costs makes it difficult to set a defensible standard, especially when there is no threshold below which health risks disappear." Ignoring costs, the economists said, "could lead to a decision to set the standard at zero pollution," which would threaten "the very economic prosperity on which public health primarily depends." The economists declared: "The importance of this issue cannot be overstated. Both direct benefits and costs of environmental, health, and safety regulations are substantial, estimated to be several hundred billion dollars annually." If the Supreme Court overturns the lower court ruling and allows the EPA to consider costs in establishing clear air regulations, the brief argued, it would be "a historic moment in the making of regulatory policy."Environment, Other Topics
Staphylococcus aureus bacteriuria as a prognosticator for outcome of Staphylococcus aureus bacteremia: a case-control study
<p>Abstract</p> <p>Background</p> <p>When <it>Staphylococcus aureus </it>is isolated in urine, it is thought to usually represent hematogenous spread. Because such spread might have special clinical significance, we evaluated predictors and outcomes of <it>S. aureus </it>bacteriuria among patients with <it>S. aureus </it>bacteremia.</p> <p>Methods</p> <p>A case-control study was performed at John H. Stroger Jr. Hospital of Cook County among adult inpatients during January 2002-December 2006. Cases and controls had positive and negative urine cultures, respectively, for <it>S. aureus</it>, within 72 hours of positive blood culture for <it>S. aureus</it>. Controls were sampled randomly in a 1:4 ratio. Univariate and multivariable logistic regression analyses were done.</p> <p>Results</p> <p>Overall, 59% of patients were African-American, 12% died, 56% of infections had community-onset infections, and 58% were infected with methicillin-susceptible <it>S. aureus </it>(MSSA). Among 61 cases and 247 controls, predictors of <it>S. aureus </it>bacteriuria on multivariate analysis were urological surgery (OR = 3.4, p = 0.06) and genitourinary infection (OR = 9.2, p = 0.002). Among patients who died, there were significantly more patients with bacteriuria than among patients who survived (39% vs. 17%; p = 0.002). In multiple Cox regression analysis, death risks in bacteremic patients were bacteriuria (hazard ratio 2.9, CI 1.4-5.9, p = 0.004), bladder catheter use (2.0, 1.0-4.0, p = 0.06), and Charlson score (1.1, 1.1-1.3, p = 0.02). Neither length of stay nor methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infection was a predictor of <it>S. aureus </it>bacteriuria or death.</p> <p>Conclusions</p> <p>Among patients with <it>S. aureus </it>bacteremia, those with <it>S. aureus </it>bacteriuria had 3-fold higher mortality than those without bacteriuria, even after adjustment for comorbidities. Bacteriuria may identify patients with more severe bacteremia, who are at risk of worse outcomes.</p
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021
In July 2021 extreme rainfall across Western Europe caused severe flooding and substantial impacts, including over 200 fatalities and extensive infrastructure damage within Germany and the Benelux countries. After the event, a hydrological assessment and a probabilistic event attribution analysis of rainfall data were initiated and complemented by discussing the vulnerability and exposure context. The global mean surface temperature (GMST) served as a covariate in a generalised extreme value distribution fitted to observational and model data, exploiting the dependence on GMST to estimate how anthropogenic climate change affects the likelihood and severity of extreme events. Rainfall accumulations in Ahr/Erft and the Belgian Meuse catchment vastly exceeded previous observed records. In regions of that limited size the robust estimation of return values and the detection and attribution of rainfall trends are challenging. However, for the larger Western European region it was found that, under current climate conditions, on average one rainfall event of this magnitude can be expected every 400 years at any given location. Consequently, within the entire region, events of similar magnitude are expected to occur more frequently than once in 400 years. Anthropogenic climate change has already increased the intensity of the maximum 1-day rainfall event in the summer season by 3–19 %. The likelihood of such an event to occur today compared to a 1.2 ∘ C cooler climate has increased by a factor of 1.2–9. Models indicate that intensity and frequency of such events will further increase with future global warming. While attribution of small-scale events remains challenging, this study shows that there is a robust increase in the likelihood and severity of rainfall events such as the ones causing extreme impacts in July 2021 when considering a larger region
Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021
In July 2021 extreme rainfall across Western Europe caused severe flooding and substantial impacts, including over 200 fatalities and extensive infrastructure damage within Germany and the Benelux countries. After the event, a hydrological assessment and a probabilistic event attribution analysis of rainfall data were initiated and complemented by discussing the vulnerability and exposure context. The global mean surface temperature (GMST) served as a covariate in a generalised extreme value distribution fitted to observational and model data, exploiting the dependence on GMST to estimate how anthropogenic climate change affects the likelihood and severity of extreme events. Rainfall accumulations in Ahr/Erft and the Belgian Meuse catchment vastly exceeded previous observed records. In regions of that limited size the robust estimation of return values and the detection and attribution of rainfall trends are challenging. However, for the larger Western European region it was found that, under current climate conditions, on average one rainfall event of this magnitude can be expected every 400 years at any given location. Consequently, within the entire region, events of similar magnitude are expected to occur more frequently than once in 400 years. Anthropogenic climate change has already increased the intensity of the maximum 1-day rainfall event in the summer season by 3–19 %. The likelihood of such an event to occur today compared to a 1.2 C cooler climate has increased by a factor of 1.2–9. Models indicate that intensity and frequency of such events will further increase with future global warming. While attribution of small-scale events remains challenging, this study shows that there is a robust increase in the likelihood and severity of rainfall events such as the ones causing extreme impacts in July 2021 when considering a larger region
Genome of the Asian Longhorned Beetle (\u3cem\u3eAnoplophora glabripennis\u3c/em\u3e), a Globally Significant Invasive Species, Reveals Key Functional and Evolutionary Innovations at the Beetle-Plant Interface
Background: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Conclusions: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants
Genome-Wide Comparative Gene Family Classification
Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species
- …