199 research outputs found

    Effects of acute exercise and learning strategy implementation on memory function

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Background and Objectives: Long-term potentiation (LTP), the functional connectivity among neurons, is considered a mechanism of episodic memory. Both acute exercise and learning are thought to influence memory via an LTP-related mechanism. Limited research has evaluated the individual and combined effects of acute exercise and learning strategy implementation (e.g., 3-R technique, cue-integration) on memory, which was the purpose of this study. Materials and Methods: For Experiment 1, participants (n = 80; Mage = 20.9 years) were randomized into one of four experimental groups, including Exercise + Learning (E + L), Learning Only (L), Exercise Only (E), and Control Group (C; no exercise and no learning strategy implementation). The exercise stimulus involved an acute 15-min bout of lower-intensity (60% of heart rate max) walking exercise and the learning strategy involved the implementation of the 3-R technique. Experiment 2 (n = 77; Mage = 21.1 years) replicated Experiment 1 but addressed limitations (e.g., exposure level of the memory task) from Experiment 1 and employed a higher-intensity bout of exercise (77% of heart rate max). Experiment 3 (n = 80; Mage = 21.0 years) evaluated these same four experimental conditions but employed a cue-integration learning strategy and a moderate-intensity bout of acute exercise (64% of heart rate max). Results: These three experiments demonstrate that both learning techniques were effective in enhancing memory and we also provided evidence of a main effect for acute exercise (Experiment 3). However, we did not observe consistent evidence of a learning by exercise interaction effect. Conclusions: We demonstrate that both acute exercise and different learning techniques are effective in enhancing long-term memory function

    Recent progress in noble-metal-free electrocatalysts for alkaline oxygen evolution reaction

    Get PDF
    The practical application of splitting water to generate hydrogen is to a large extent hindered by an oxygen evolution reaction (OER) process. Electrocatalysts with low-cost, high activity, and durability are essential for the low kinetic threshold of the OER. Despite the high active performances of noble metal compound electrocatalysts like IrO2 and RuO2, they are heavily restricted by the high cost and scarcity of noble metal elements. In this context, noble-metal-free electrocatalysts have acquired increasing significance in recent years. So far, a broad spectrum of noble-metal-free electrocatalysts has been developed for improved OER performance. In this review, three types of electrolysis and some evaluation criteria are introduced, followed by recent progress in designing and synthesizing noble-metal-free alkaline OER electrocatalysts, with the classification of metal oxides/(oxy)hydroxides, carbon-based materials, and metal/carbon hybrids. Finally, perspectives are also provided on the future development of the alkaline OER on active sites and stability of electrocatalysts

    Design and Control of a Ferromagnetic Coded Micro-Carrier Biochip Sensor for Multiplex Detection of Antibodies

    Get PDF
    This paper describes a method for producing a novel type of ferromagnetic coded micro-carrier. The ferromagnetic coded micro-carriers are about 200 μm in length, 200 μm in width and 50 μm in thickness, and contain eight code elements with two distinguishable codes (hollow and solid), allowing for 28 unique codes. The code shapes include rectangle, circle, etc. Differently shaped coded micro-carriers could carry different antigens for detection of its complementary antibody. These many shapes of coded micro-carriers would be used simultaneously allowing us to make multiple detections for different antibodies at the same time. A molding process is applied for fabrication of the ferromagnetically coded micro-carriers where Fe material (Fe powder mixed with binder) is shaped in many tiny molds to produce the coded shapes used for identification of the bio-molecules. Magnetic force is used to control the movement and location of the ferromagnetic coded micro-carriers to prevent the loss during the hybridization process. The results of image process and analysis system testing are satisfactory. The results of our micro-carrier detection system for two sets of R and B color analysis are proportional to those obtained from ELISA antibody detection

    Biocatalytic Synthesis of Polymers of Precisely Defined Structures

    Get PDF
    The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure

    CD36 Participates in PrP106–126-Induced Activation of Microglia

    Get PDF
    Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106–126 (PrP106–126). We first examined the time course of CD36 mRNA expression upon exposure to PrP106–126 in BV2 microglia. We then analyzed different parameters of microglial activation in PrP106–126-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP106–126. The results showed that PrP106–126 treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP106–126-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP106–126-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP106–126 –treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP106–126. Together, these results suggest that CD36 is involved in PrP106–126-induced microglial activation and that the participation of CD36 in the interaction between PrP106–126 and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling

    A sub-Neptune transiting the young field star HD 18599  at 40 pc

    Get PDF
    Transiting exoplanets orbiting young nearby stars are ideal laboratories for testing theories of planet formation and evolution. However, to date only a handful of stars with age <1 Gyr have been found to host transiting exoplanets. Here we present the discovery and validation of a sub-Neptune around HD 18599 , a young (300 Myr), nearby (d = 40 pc) K star. We validate the transiting planet candidate as a bona fide planet using data from the TESS , Spitzer , and Gaia  missions, ground-based photometry from IRSF , LCO , PEST , and NGTS , speckle imaging from Gemini, and spectroscopy from CHIRON , NRES , FEROS , and Minerva-Australis . The planet has an orbital period of 4.13 d , and a radius of 2.7 R⊕ . The RV data yields a 3-σ mass upper limit of 30.5 M⊕  which is explained by either a massive companion or the large observed jitter typical for a young star. The brightness of the host star (V∼9 mag) makes it conducive to detailed characterization via Doppler mass measurement which will provide a rare view into the interior structure of young planets
    corecore