2,971 research outputs found

    Tuning Jeff = 1/2 Insulating State via Electron Doping and Pressure in Double-Layered Iridate Sr3Ir2O7

    Get PDF
    Sr3Ir2O7 exhibits a novel Jeff=1/2 insulating state that features a splitting between Jeff=1/2 and 3/2 bands due to spin-orbit interaction. We report a metal-insulator transition in Sr3Ir2O7 via either dilute electron doping (La3+ for Sr2+) or application of high pressure up to 35 GPa. Our study of single-crystal Sr3Ir2O7 and (Sr1-xLax)3Ir2O7 reveals that application of high hydrostatic pressure P leads to a drastic reduction in the electrical resistivity by as much as six orders of magnitude at a critical pressure, PC = 13.2 GPa, manifesting a closing of the gap; but further increasing P up to 35 GPa produces no fully metallic state at low temperatures, possibly as a consequence of localization due to a narrow distribution of bonding angles {\theta}. In contrast, slight doping of La3+ ions for Sr2+ ions in Sr3Ir2O7 readily induces a robust metallic state in the resistivity at low temperatures; the magnetic ordering temperature is significantly suppressed but remains finite for (Sr0.95La0.05)3Ir2O7 where the metallic state occurs. The results are discussed along with comparisons drawn with Sr2IrO4, a prototype of the Jeff = 1/2 insulator.Comment: five figure

    Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    Get PDF
    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts’ metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts’ interaction with regional-scale differences in geochemistry.National Science Foundation (U.S.) (OCE-0732369)National Science Foundation (U.S.) (GRF grant no. DGE-1144152)Gordon and Betty Moore Foundation (Investigator)Agouron Institut

    Current Demographics Suggest Future Energy Supplies Will Be Inadequate to Slow Human Population Growth

    Get PDF
    Influential demographic projections suggest that the global human population will stabilize at about 9–10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections

    Observation of a pressure-induced transition from interlayer ferromagnetism to intralayer antiferromagnetism in Sr4Ru3O10

    Get PDF
    Sr4Ru3O10 is a Ruddlesden-Popper compound with triple Ru-O perovskite layers separated by Sr-O alkali layers. This compound presents a rare coexistence of interlayer (c-axis) ferromagnetism and intralayer (basal-plane) metamagnetism at ambient pressure. Here we report the observation of pressure-induced, intralayer itinerant antiferromagnetism arising from the interlayer ferromagnetism. The application of modest hydrostatic pressure generates an anisotropy that causes a flattening and a tilting of RuO6 octahedra. All magnetic and transport results from this study indicate these lattice distortions diminish the c-axis ferromagnetism and basal-plane metamagnetism, and induce a basal-plane antiferromagnetic state. The unusually large magnetoelastic coupling and pressure tunability of Sr4Ru3O10 makes it a unique model system for studies of itinerant magnetism.Comment: 6 figure

    Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 543, doi:10.3389/fmicb.2014.00543.Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.This work is a contribution of the Center for Microbial Oceanography: Research and Education (C-MORE) and was made possible by generous support from the National Science Foundation (1151698 to Frank J. Stewart and EF0424599 to Edward F. DeLong), the Alfred P. Sloan Foundation (Frank Stewart), the Gordon and Betty Moore Foundation (Edward F. DeLong), and the Agouron Institute (Edward F. DeLong). Edgcomb's involvement was supported by contributions from the Woods Hole Oceanographic Institution Director of Research and Ocean Life Institute

    Time-frequency Domain Analogues of Phase Space Sub-Planck Structures

    Full text link
    We present experimental data of the frequency resolved optical gating (FROG) measurements of light pulses revealing interference features corresponding to sub-Planck structures in phase space. For superpositions of pulses a small, sub-Fourier shift in the carrier frequency leads to a state orthogonal to the initial one, although in the representation of standard time-frequency distributions these states seem to have a nonvanishing overlap.Comment: New title, minor change

    Using the Bootstrap to test for symmetry under unknown dependence

    Get PDF
    This paper considers tests for symmetry of the one-dimensional marginal distribution of fractionally integrated processes. The tests are implemented by using an autoregressive sieve bootstrap approximation to the null sampling distribution of the relevant test statistics. The sieve bootstrap allows inference on symmetry to be carried out without knowledge of either the memory parameter of the data or of the appropriate norming factor for the test statistic and its asymptotic distribution. The small-sample properties of the proposed method are examined by means of Monte Carlo experiments, and applications to real-world data are also presented

    Fishing regulations, sexual dimorphism, and the life history of harvest

    Get PDF
    Freshwater recreational fisheries regulations are a vital tool for achieving social and ecological fisheries objectives. However, angler behavior and fish biology may interact to influence regulation efficacy in unexpected ways. We combined models of fish growth and angler behavior to explore how angler behavior interacts with fish life history to shape the probability of fish harvest given capture across ages, life stages, and sexes of walleye (Sander vitreus). Compared to females, males grew more quickly as juveniles, matured earlier, and reached smaller maximum sizes. Male walleye were therefore vulnerable to harvest for more of their reproductive lives than females because males spent more time at sizes where anglers were very likely to harvest them. We suggest that restricting harvest of large individuals in sexually dimorphic species may favor the survival of large, reproductive-aged females. Moreover, we show that combining models of fish growth and harvester behavior can provide insights into how harvest affects fish with complex life histories over the course of their lives. La réglementation relative aux pêches sportives en eau douce constitue un outil d’importance capitale pour l’atteinte des objectifs sociaux et écologiques des pêches. Les interactions des comportements des pêcheurs et de la biologie des poissons peuvent toutefois influencer l’efficacité de la réglementation de manière imprévue. Nous combinons des modèles de croissance des poissons et de comportement des pêcheurs afin d’examiner l’effet de l’interaction du comportement des pêcheurs et du cycle biologique des poissons sur la probabilité de récolte de poissons au vu des prises selon l’âge, de l’étape du cycle de vie et du sexe de dorés jaunes (Sander vitreus). Comparativement aux femelles, les mâles croissent plus vite quand ils sont juvéniles, arrivent à maturité plus tôt et atteignent des tailles maximums plus petites. Les dorés mâles sont donc plus vulnérables à la récolte pour une plus grande partie de leur vie reproductive que les femelles parce qu’ils passent plus de temps à des tailles qui les rendent plus susceptibles d’être récoltés par les pêcheurs. Nous suggérons que le fait de restreindre la récolte aux grands individus pour des espèces qui présentent un dimorphisme sexuel pourrait favoriser la survie des grandes femelles en âge de reproduction. Nous démontrons en outre que le jumelage de modèles de croissance des poissons et de comportement des pêcheurs peut fournir de l’information utile sur l’effet de la récolte sur les poissons aux cycles biologiques complexes au fil de leur vie

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system
    corecore