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Abstract

This paper considers tests for symmetry of the one-dimensional marginal dis-

tribution of fractionally integrated processes. The tests are implemented by

using an autoregressive sieve bootstrap approximation to the null sampling

distribution of the relevant test statistics. The sieve bootstrap allows inference

on symmetry to be carried out without knowledge of either the memory pa-

rameter of the data or of the appropriate norming factor for the test statistic

and its asymptotic distribution. The small-sample properties of the proposed

method are examined by means of Monte Carlo experiments, and applications

to real-world data are also presented.
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1 Introduction

Testing for symmetry of a probability distribution about a specified or unspecified

center is a problem that has attracted considerable attention. This is not perhaps

surprising in view of the fact that many nonparametric and robust statistical proce-

dures rely to a certain extent on the assumption of symmetry. Symmetry, or lack of

it, is also important in terms of the definition and estimation of location since the

center of symmetry of a distribution is its only natural location parameter. From the

viewpoint of statistical model building, a check for symmetry is a useful addition to

existing diagnostics since the absence of such a distributional characteristic would

exclude certain families of parametric models (e.g., linear ARMA models with inde-

pendent and symmetrically distributed noise) from the set of valid candidate models.

In the economics and finance literature, symmetry is an implicit or explicit

assumption in some commonly used models, including, for example, many ratio-

nal expectations models, the Sharpe—Lintner capital asset pricing model, and the

Black—Scholes option pricing model. With many empirical studies reporting signifi-

cant evidence of asymmetry in the distributions of financial and economic data, the

adequacy of such models and their data coherency have become issues of concern,

and extensions/modifications have been proposed to incorporate asymmetry in the

models. Another prominent example from macroeconomics in which symmetry is a

central issue relates to the question of whether real economic variables behave asym-

metrically over the phases of the business cycle. Following the influential work of

DeLong and Summers (1986), a large literature has evolved in which different types

of cyclical asymmetry are identified via the distributional asymmetry of relevant

economic variables. In light of favorable empirical evidence for cyclical asymmetry,

economic models have been developed which are capable of generating asymmet-

ric behavior endogenously. As Lee (2007) aptly notes, therefore, “...an appropriate

test for distribution symmetry is useful not only in understanding distributional

characteristics of data but also in evaluating economic hypotheses and models.”

Although most of the voluminous work on the subject of testing for symmetry

has focused on the case of independent, identically distributed (i.i.d.) data, a small

number of studies have discussed tests which are robust to deviations from the
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assumption of independence; relevant references include Chen, Chou, and Kuan

(2000), Psaradakis (2003, 2008), Bai and Ng (2005), Delgado and Escanciano (2007),

Lee (2007), and Racine and Maasoumi (2007). These studies rely on large-sample

results obtained under short-range dependence conditions, which typically imply

that the autocovariances of the data decay to zero, as the lag parameter tends to

infinity, sufficiently fast to be absolutely summable. It has long been recognized,

however, that such dependence conditions may not accord well with the slowly

decaying autocovariances that are observed in many time series.

Our aim in the present paper is to discuss tests for symmetry which are valid in

the presence of not only short-range dependence but also long-range dependence and

antipersistence. The defining feature of stochastic processes with such dependence

structures is that their autocovariances decay to zero as a power of the lag parame-

ter and, in the case of long-range dependence, slowly enough to be non-summable.

Stochastic models exhibiting long-range dependence are not only of theoretical in-

terest but have also been found to be useful for modelling real-world data occurring

in fields as diverse as economics, geophysics, hydrology, meteorology, and telecom-

munications; see Doukhan, Oppenheim, and Taqqu (2003) for an extensive review.

The symmetry tests we consider exploit the fact that an odd function of cen-

tered data, which we denote by ψ, has zero expectation under distributional sym-

metry.1 The tests are applied to fractionally integrated processes that may exhibit

short-range dependence, long-range dependence or antipersistence, depending on

the value of a memory/dependence parameter, which we denote by d. Although

the test statistics are simple linear statistics, inference is complicated by the fact

that their asymptotic null distributions depend on certain properties of ψ and on

the (unknown) value of d, involve nuisance (and difficult to estimate) parameters,

and may be non-standard. Moreover, the appropriate norming factors needed to

ensure that the test statistics have a nondegenerate asymptotic distribution are also

dependent upon ψ and d.

As a practical way of overcoming these obstacles, we propose to use the bootstrap

to estimate the sampling distribution of the statistics of interest. Our approach

1A similar approach was pursued by Lee (2007) under short-range dependence conditions.
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relies on the sieve bootstrap, which is based on the idea of approximating the data-

generating mechanism by an autoregressive sieve, that is a sequence of autoregressive

models that increase in order as the sample size diverges to infinity (Kreiss (1992);

Bühlmann (1997)). The sieve bootstrap delivers tests for symmetry which are easy

to implement, asymptotically valid, and require knowledge (or estimation) of neither

the value of the memory parameter of the data nor of the appropriate norming factor

for the test statistic. Furthermore, the resampling scheme is the same under short-

range dependence, long-range dependence, and antipersistence.

The remainder of the paper is organized as follows. Section 2 formulates the

problem, and introduces the test criteria and stochastic processes of interest. Sec-

tion 3 describes the sieve bootstrap method for approximating the distribution of the

test statistics. Section 4 examines the small-sample properties of the tests by means

of simulation experiments. Section 5 illustrates the practical use of the proposed

methods by presenting applications to realized stock return volatility and output

growth. Section 6 summarizes and concludes.

2 Problem, Assumptions and Test Statistics

Let X := {Xt}t∈Z be a strictly stationary sequence of real-valued random variables

with E(X0) = μ for some μ ∈ R. The problem of interest is to test the hypothesis

that the one-dimensional marginal distribution of X is symmetric about μ, that is,

L(X0 − μ) = L(μ−X0), (1)

where L(V ) denotes the distribution of a random variable V .

It is easy to see that, if (1) holds, then ζψ := E[ψ(X0−μ)] = 0 for any real, odd,

Borel function ψ on R with E[|ψ(X0 − μ)|] <∞. Hence, ζψ may be used as an index
of symmetry of the distribution of X0. Examples of functions ψ which have been

used in the literature to construct tests for symmetry include ψ(x) = x2b+1 for some

b ∈ N (Gupta (1967); Bai and Ng (2005)), ψ(x) = ax/(1 + a2x2) for some a > 0

(Chen, Chou, and Kuan (2000)), ψ(x) = arctanx (Premaratne and Bera (2005)),

and ψ(x) = sgnx (Gastwirth (1971)).
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A natural empirical analogue of ζψ based on a sample X
n := (X1, . . . , Xn) of

n ∈ N consecutive observations from X is

Sψ := n−1
nX
t=1

ψ(Xt − X̄), (2)

where X̄ := n−1
Pn

t=1Xt. Values of Sψ near zero would be consistent with the

symmetry hypothesis (1). In the case of testing for symmetry about a specified

center μ = μ0, the summands in (2) may be replaced by ψ(Xt − μ0).

With regard to the class of stochastic processes considered in our analysis, it will

be maintained throughout that X is a fractionally integrated process with memory

(or fractional differencing) parameter d. More precisely:

(A.1) X satisfies the equations

Xt − μ = (1−B)−dYt, t ∈ Z, (3)

for some fixed d ∈ (−1
2
, 1
2
), where Y := {Yt}t∈Z is a sequence of zero-mean

random variables and B denotes the backward shift operator (BYt := Yt−1).

As usual, the fractional differencing operator (1− B)−d in (3) is defined by means

of a Maclaurin series expansion,

(1−B)−d := 1 +
∞X
j=1

Γ(j + d)

Γ(d)Γ(j + 1)
Bj,

where Γ denotes the gamma function (with the convention 1/Γ(0) = 0). It is further

assumed that:

(A.2) Y satisfies the equations

Yt =
∞X
j=0

πjξt−j, t ∈ Z, (4)

where {πj}j∈N0 , N0 := N ∪ {0}, is an absolutely summable sequence of real
numbers (with π0 := 1) such that π∞ :=

P∞
j=0 πj 6= 0, and {ξt}t∈Z is a strictly

stationary and ergodic sequence of real-valued random variables with a finite

fourth absolute moment such that E(ξt|Ft−1) = 0 and E(ξ2t |Ft−1) = σ2 > 0 for

all t, Ft−1 being the sigma-algebra generated by {ξt−i}i∈N.
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Under (A.1)—(A.2), X is a strictly stationary and ergodic process that admits

the linear representation

Xt − μ =
∞X
j=0

θjξt−j, t ∈ Z, (5)

for some square-summable sequence of real numbers {θj}j∈N0 (with θ0 := 1) satisfy-
ing θj = {π∞/Γ(d)}jd−1{1 + o(1)} (j →∞) for d 6= 0. Putting γh := Cov(X0,Xh),

h ∈ Z, we have γh = Cd |h|2d−1 {1+o(1)} (|h|→∞) for d 6= 0 and some Cd ∈ R\{0}.
Hence,

P∞
h=−∞ γh =∞ for d ∈ (0, 1

2
) and X exhibits long-range dependence. When

d ∈ (−1
2
, 0), X is said to be antipersistent and

P∞
h=−∞ γh = 0. If d = 0, then X is

short-range dependent with
P∞

h=−∞ γh = σ2π2∞.

The class of stochastic processes defined by (3)—(4) is rich enough to include many

processes with slowly decaying autocovariances, and is arguably the most important

class of long-range dependent and antipersistent processes. A prominent example

are autoregressive fractionally integrated moving average (ARFIMA) processes, ob-

tained with Y in (3) being a causal ARMA process. We note, however, that rates

of decay for the weighting sequence {πj} in (4) much slower than the exponential
rate that is characteristic of ARMA processes are also permitted (e.g., πj = j−λL(j)

for some λ > 1 and a real function L on [1,∞) that is slowly varying at infinity in
Karamata’s sense). It is easy to see that, if {ξt} is an i.i.d. sequence, then symmetry
of ξ0 (i.e., L(ξ0) = L(−ξ0)) implies (1).
The asymptotic behavior of Sψ for fractionally integrated processes depends on

the value of d and on the properties of ψ and Y, and may be determined on a

case-by-case basis, under additional assumptions about ψ and Y, by relying on the

results in Ho and Hsing (1997), Koul and Surgailis (1997), and Ho (2002), inter alia.

The asymptotic null distribution of Sψ may be Gaussian or non-Gaussian, depending

on the memory parameter of X and the properties of ψ. To appreciate why, note

that, under an i.i.d. assumption about {ξt}, appropriate regularity conditions on
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the distribution of ξ0, and smoothness conditions on ψ, Sψ admits the representation

Sψ = n−1
nX
t=1

ψ(Xt − μ) +
mX
k=1

(1/k!)∆
(0,k)
ψ (0, μ)(X̄ − μ)k

+
m−1X
r=1

n−1Ur

m−rX
s=1

(1/s!)∆
(r,s)
ψ (0, μ)(X̄ − μ)s +Rψ, (6)

for some m ∈ N, where

∆
(r,s)
ψ (x0, y0) :=

∂r+sE[ψ(X0 + x− y)]

∂xr∂ys

¯̄̄̄
x=x0,y=y0

, r, s ∈ N0,

Ur :=
nX
t=1

X
06j1<···<jr<∞

rY
s=1

θjsξt−js , r ∈ N,

U0 := n, and Rψ is a remainder which converges in probability to zero, as n→∞,
at a rate that depends on d and m (see Ho (2002)). In general, the first three terms

in the right-hand side of (6) all contribute to the asymptotic distribution of Sψ, and

they may or may not be asymptotically normal when X is long-range dependent.

In addition, the norming factor needed to produce a nondegenerate weak limit for

the distribution of Sψ is also dependent upon d and m. For example, under suitable

moment conditions on ξ0 and some growth conditions on ψ, the centered partial sum

Tψ :=
Pn

t=1{ψ(Xt − μ) − ζψ} is asymptotically normal under n−1/2 norming (with
variance 0 6

P∞
h=−∞Cov (ψ(X0 − μ), ψ(Xh − μ)) < ∞), when either d ∈ (−1

2
, 0],

or d ∈ (0, 1
2
) and κ(1 − 2d) > 1, κ being the smallest positive integer for which

∆
(κ,0)
ψ (0, μ) exists in R\{0}. If, on the other hand, d ∈ (0, 1

2
) and κ(1−2d) < 1, then

n−1+(κ/2)(1−2d)Tψ converges in distribution to (Λκ
d/κ!)∆

(κ,0)
ψ (0, μ)Zd,κ, as n → ∞,

where Λd := σπ∞/Γ(d) and, for any d ∈ (0, 1
2
) and k ∈ N with k < (1− 2d)−1, the

random variable Zd,k is defined as the k-tuple Wiener—Itô integral

Zd,k :=

Z
Rk

(Z 1

0

kY
i=1

(max{0, v − xi})d−1dv
)
W(dx1) · · ·W(dxk),

W being a real-valued Gaussian random measure on R with Lebesgue control mea-

sure (Ho and Hsing (1997); Koul and Surgailis (1997)). Similarly, for any r ∈ N
such that |ξ0|2r is integrable, n−1/2Ur is asymptotically normal, as n → ∞, when
either d ∈ (−1

2
, 0], or d ∈ (0, 1

2
) and r(1− 2d) > 1; if d ∈ (0, 1

2
) and r(1− 2d) < 1,
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then the distribution of n−1+(r/2)(1−2d)Ur converges weakly to that of (Λr
d/r!)Zd,r as

n→∞ (Surgailis (1982); Avram and Taqqu (1987)). Note that Zd,k is Gaussian for

k = 1 and non-Gaussian for k > 2.
It is worth stressing that these difficulties also arise when testing for symmetry

about a specified center μ = μ0, even though Sψ does not involve any estimated

parameters in this case. For example, under suitable regularity conditions on ψ

and Y (see, e.g., Ho and Hsing (1997)), nκ̄(1−2d)/2Sψ converges in distribution to

(Λκ̄
d/κ̄!)∆

(κ̄,0)
ψ (0, μ0)Zd,κ̄, as n→∞ under (1), whenever d ∈ (0, 1

2
) and κ̄(1−2d) < 1,

κ̄ being the smallest positive integer for which ∆
(κ̄,0)
ψ (0, μ0) exists in R\{0}.

We also note that a test of the symmetry hypothesis (1) may be based on a stu-

dentized statistic of the form w−1ψ Sψ, where w2ψ is a suitable estimator of the variance

of Sψ. This approach is not, however, without difficulty, even when the center of

symmetry is specified, due to the fact that construction of an appropriate estimator

w2ψ is far from straightforward in our setting. Assuming ψ and X are such that the

(generally nonlinear) process {ψ(Xt − μ)} is fourth-order stationary with autoco-
variances which are either absolutely summable or asymptotically proportional to

|h|−βψ , as the lag parameter |h| tends to infinity, for some βψ ∈ (0, 2)\{1}, one may
consider estimators w2ψ of the type discussed in Berkes, Horváth, Kokoszka, and

Shao (2005) and Abadir, Distaso, and Giraitis (2009). However, such estimators

rely on knowledge or estimation of βψ (which is determined by ψ and d) and/or

are sensitive to the selection of a bandwidth parameter (the optimal choice of which

depends on βψ). For these reasons, our analysis will be based on the non-studentized

statistic Sψ.

In the next section of the paper, we discuss how the sieve bootstrap may be

used as a practical way of overcoming the difficulties associated with the depen-

dence of the behavior of Sψ on d, m and κ. The principal advantage of the sieve

bootstrap is that it can used to draw statistical inferences from Sψ to ζψ without

knowledge of the memory parameter of X or of the properties of ψ, and is valid for

all d ∈ (−1
2
, 1
2
). Moreover, because bootstrap approximations are constructed from

replicates of Sψ, there is no need to analytically derive (nor to make assumptions

about) the appropriate norming factor for Sψ and its asymptotic null distribution.
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3 Sieve Bootstrap Inference

The sieve bootstrap scheme is motivated by the observation that, if Y is invertible,

in the sense that
P∞

j=0 πjz
j 6= 0 for all complex z with |z| 6 1, then X admits the

autoregressive representation

∞X
j=0

φj(Xt−j − μ) = ξt, t ∈ Z, (7)

for some square-summable sequence of real numbers {φj}j∈N0 (with φ0 := 1) satis-

fying φj = {π∞Γ(−d)}−1j−d−1{1 + o(1)} (j →∞) for d 6= 0. However, as noted in
Poskitt (2007), the representation (7) provides a meaningful approximation even if

Y is not invertible. In the latter case,
P∞

j=0 φjz
j may be viewed as arising from the

limit of
Pp

j=0 φp,jz
j as p→∞ (φp,0 := 1), where, for a fixed p ∈ N, (−φp,1, . . . ,−φp,p)

are the coefficients of the best linear predictor of X0 based on (X−1, . . . , X−p). Un-

der (A.1)—(A.2), the finite predictor coefficients of X are uniquely determined as the

solution of the set of equations
Pp

j=0 φp,jγk−j = 0 (k = 1, . . . , p) (cf. Brockwell and

Davis (1991, Corollary 5.1.1)), and satisfy
Pp

j=0 φp,jz
j 6= 0 for |z| 6 1. The idea is to

approximate (7) by a finite-order autoregressive model and use this as the basis of a

residual-based resampling scheme. If the order of the autoregressive approximation

is allowed to increase with the sample size at an appropriate rate, the distribution

of the process in (7) will be matched asymptotically (cf. Kreiss (1992); Bühlmann

(1997); Kapetanios and Psaradakis (2006); Poskitt (2008)).

To formalize our sieve bootstrap scheme, for some p = p(n) ∈ N with p ¿ n,

let (φ̂p,1, . . . , φ̂p,p) and σ̂2p be estimators (based on X
n) of the coefficients and noise

variance, respectively, of a pth-order autoregressive model for Xt − X̄. Further, let

{ξ̂p,t} be the corresponding residuals, i.e.,

ξ̂p,t :=

pX
j=0

φ̂p,j(Xt−j − X̄), t = p+ 1, . . . , n,

with φ̂p,0 := 1. For any Borel subset A of R, put

Q̂p(A) := {2(n− p)}−1
nX

t=p+1

n
1A(

−1
p ξ̂p,t) + 1A(− −1

p ξ̂p,t)
o
,
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where 2
p := (n−p)−1

Pn
t=p+1(ξ̂p,t− ξ̄p)

2, ξ̄p := (n−p)−1
Pn

t=p+1 ξ̂p,t, and 1A denotes

the indicator function of A. Bootstrap replicates X∗p := {X∗
p,t}t∈Z of X are then

defined via the recursion
pX

j=0

φ̂p,j(X
∗
p,t−j − X̄) = σ̂pξ

∗
p,t, t ∈ Z, (8)

where, conditionally on Xn, {ξ∗p,t}t∈Z are i.i.d. random variables with common

distribution Q̂p. Finally, the bootstrap analogue S∗ψ of Sψ is obtained as

S∗ψ := n−1
nX
t=1

ψ(X∗
p,t − X̄∗

p ),

where X̄∗
p := n−1

Pn
t=1X

∗
p,t.

The conditional distribution of S∗ψ, given X
n, constitutes the sieve bootstrap

approximation to the null sampling distribution of Sψ. Note that the empirical

distribution Q̂p is symmetric about zero and, in consequence, the conditional dis-

tribution of X∗
p,t, given X

n, is symmetric with X̄ as the center of symmetry. This

means that X∗p is constructed in a way which reflects the symmetry hypothesis un-

der test even when X does not satisfy (1). This is important for ensuring that the

bootstrap test of the hypothesis (1) has reasonable power against departures from

symmetry (cf. Hall and Wilson (1991); Lehmann and Romano (2005, Section 15.6)).

To examine the asymptotic properties of the sieve bootstrap for Sψ, the following

additional assumptions are made:

(A.3) (φ̂p,1, . . . , φ̂p,p) and σ̂2p satisfy the empirical pth-order Yule—Walker equationsPp
j=0 φ̂p,j γ̂k−j = δ0,kσ̂

2
p (k = 0, 1, . . . , p), where δ0,k is Kronecker’s delta and

γ̂h := n−1
Pn−|h|

t=1 (Xt+|h| − X̄)(Xt − X̄) for |h| < n.

(A.4) p = p(n)→∞ as n→∞ so that p(n) = O ({logn}τ) for some τ > 1.

(A.5) ψ is continuously differentiable almost everywhere on R.

The proposition that follows (the proof of which appears in the Appendix) estab-

lishes strong consistency of the sieve bootstrap approximation to the null distribution

of Sψ under the resampling scheme described earlier, thereby justifying the use of our
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bootstrap-based inferential procedures. Closeness of two distributions Q1 and Q2 on

R having finite second moments is described in terms of their Mallows—Wasserstein

distance, which is defined as ρ(Q1, Q2) := inf{E(|V1 − V2|2)} 12 , the infimum being

taken over all pairs of random variables (V1, V2) with L(V1) = Q1 and L(V2) = Q2.

It is well known (see, e.g., Bickel and Freedman (1981, Lemma 8.3)) that ρ metrizes

weak convergence together with convergence of second moments. (In what follows,

L(V |Xn) denotes the conditional distribution of V given Xn).

Proposition 1 Suppose (A.1)—(A.5) and (1) hold. Then, ρ
¡L(S∗ψ|Xn),L(Sψ)

¢→ 0

almost surely as n→∞.

It is worth noting that assumption (A.3) is made for the sake of technical conve-

nience because it ensures that the polynomial
Pp

j=0 φ̂p,jz
j has no zeros in the disk

{z : |z| 6 1}. However, the Yule—Walker estimator in (A.3) may be replaced by the
least-squares estimator without changing the conclusion of Proposition 1, for the two

estimators are asymptotically equivalent under our regularity conditions (cf. Poskitt

(2007, Corollary 1)). Similarly, (A.4) is used because of its appealing feature that

the requirement on the relative asymptotic rates of p and n does not depend on the

(unknown) memory parameter d, but the assertion of Proposition 1 also holds for

any choice of p that diverges to infinity with n at the rate o({n/ log n} 12−max{0,d}).
In practice, analytical computation of the bootstrap distribution of S∗ψ is typi-

cally intractable, but an approximation (of any desired accuracy) can be obtained by

Monte Carlo simulation. Specifically, if S∗ψ,1, . . . , S
∗
ψ,N are N conditionally indepen-

dent copies of S∗ψ, obtained by repeatingN times the resampling procedure described

earlier, then the empirical distribution of (S∗ψ,1, . . . , S
∗
ψ,N) serves as an approximation

to the bootstrap distribution of S∗ψ. Hence, the bootstrap P -value for a test which

rejects for large values of |Sψ| is obtained as P ∗ψ := N−1PN
i=1 1(−∞,0](|Sψ|− |S∗ψ,i|),

and the null hypothesis of symmetry is rejected at a given level of significance

α ∈ (0, 1) if P ∗ψ 6 α. Another possibility is to reject symmetry whenever P̄ ∗ψ 6 α,

where P̄ ∗ψ := min{2N−1PN
i=1 1(−∞,0](Sψ − S∗ψ,i), 2N

−1PN
i=1 1(0,∞)(Sψ − S∗ψ,i)}; this

corresponds to an equal-tailed (rather than symmetrical) test of nominal level α. As

we did not find any significant differences between the properties of tests based on

P̄ ∗ψ and P ∗ψ, we shall hereafter focus on the latter.
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The sieve bootstrap may also be used to construct confidence intervals for ζψ

based on Sψ. For example, for a fixed α ∈ (0, 1), an (approximate) 100(1 − α)%

two-sided confidence interval for ζψ is obtained ash
2Sψ −K∗

ψ
(1− α

2
), 2Sψ −K∗

ψ
(α
2
)
i
, (9)

where K∗
ψ
is the quantile function associated with L(S∗ψ|Xn). An approximation

to K∗
ψ
can be obtained by modifying the bootstrap scheme described earlier so

that, conditionally on Xn, each ξ∗p,t in (8) is distributed according to the empirical

distribution Q̂†
p(A) := (n−p)−1

Pn
t=p+1 1A(

−1
p ξ̂p,t− −1

p ξ̄p) instead of its symmetrized

counterpart Q̂p (this implies that the bootstrap replicates X∗p are not constrained

to be symmetrically distributed). When (A.1)—(A.5) hold, asymptotic validity of

the sieve bootstrap for Sψ under the resampling scheme based on Q̂†
p follows from

Lemma 1, Theorem 2 and Remark 2 of Poskitt (2008).

In the implementation of the sieve bootstrap in practice, bootstrap replicates

may be obtained according to (8) by setting (X∗
p,−p+1, . . . , X

∗
p,0) = (Xq−p+1, . . . , Xq),

where q is an integer chosen randomly from the set {p, p + 1, . . . , n}. Another

possibility is to set X∗
p,−p+1 = · · · = X∗

p,0 = X̄, generate n + n0 replicates for some

large positive integer n0, and then discard the initial n0 replicates to eliminate start-

up effects (this procedure, with n0 = 100, is used in the remainder of the paper).

Another important practical consideration is the choice of the order p of the au-

toregressive sieve. A data-driven selection procedure may be based on minimization

(over a suitable range of values of p) of an objective function of the form

C(p) := log σ̂2p + n−1pf(n), (10)

where f(n) is a nondecreasing function of n that determines the strength of the

penalty term associated with any given order p. The well-known Akaike informa-

tion criterion (AIC), Schwarz Bayesian criterion, and Hannan—Quinn criterion are

obtained from (10) with f(n) = 2, f(n) = logn, and f(n) = c log logn (c > 2),

respectively. The following proposition (proved in the Appendix) provides the theo-

retical justification for the use of order selection criteria such as C(p) in our setting
by giving conditions under which a data-dependent choice of p based on (10) meets,

with probability 1, the requirements of (A.4).
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Proposition 2 Suppose (A.1)—(A.3) hold and let p̂ := argmin16p6M C(p), with
M = M(n) → ∞ and M(n) = O({log n}τ), as n → ∞, for some τ > 1, f(n) > 0

for all n ∈ N, and f(n) = o(n {log n}−τ−ε), as n → ∞, for some ε > 0. Then, p̂

satisfies (A.4) almost surely.

We note that the result stated in Proposition 2 remains true if the Yule—Walker

estimator σ̂2p in (10) is replaced by the corresponding least-squares estimator. We

also note that, under mild regularity conditions (cf. Poskitt (2007, Theorem 9)),

the autoregressive order selected by C(p) with f(n) = 2 is asymptotically efficient,

in the sense defined by Shibata (1980), for all d ∈ (−1
2
, 1
2
).

We conclude this section by remarking that the linear structure imposed on

Y by (A.2) is admittedly somewhat restrictive. However, the results of Bickel and

Bühlmann (1996, 1997) indicate that linearity may not be too onerous a requirement

since the closure (with respect to the total variation metric) of the class of linear

processes is quite large; roughly speaking, for any stationary nonlinear process, there

exists another process in the closure of linear processes having identical sample paths

with probability exceeding e−1 ' 0.37. This suggests that the sieve bootstrap is

likely to yield reasonably good approximations within a class of processes larger

than that associated with (5).

4 Monte Carlo Experiments

In this section, we examine the small-sample properties of the proposed symmetry

tests by means of Monte Carlo experiments. The data-generating mechanism is an

ARFIMA process satisfying the equations

Xt − μ = (1 + ϕB)−1(1 + ϑB)(1−B)−dξt, t ∈ Z, (11)

with μ = 0, ϕ = −0.7, ϑ = −0.3, and d ∈ {−0.1, 0, 0.25, 0.4}.2 The i.i.d. noise {ξt}
in (11) is drawn from the following distributions, standardized to have zero mean

and unit variance (β1 and β2 are the classical measures of skewness and kurtosis

based on the standardized third and fourth central moments, respectively):

2The values of the ARFIMA parameters are taken from Nordman, Sibbertsen, and Lahiri (2007).
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(S1) Normal (β1 = 0, β2 = 3).

(S2) Double exponential (β1 = 0, β2 = 6).

(S3) Student’s t with 5 degrees of freedom (β1 = 0, β2 = 9).

(S4) Generalized lambda with parameters λ1 = 0, λ2 = −0.397912, λ3 = λ4 =

−0.16 (β1 = 0, β2 = 11.6).

(S5) Generalized lambda with parameters λ1 = 0, λ2 = −1, λ3 = λ4 = −0.24
(β1 = 0, β2 = 126).

(A1) Chi-square with 4 degrees of freedom (β1 = 1. 414 2, β2 = 6).

(A2) Exponential (β1 = 2, β2 = 9).

(A3) Lognormal with median 1 and shape parameter 0.7 (β1 = 2.888, β2 = 20.79).

(A4) Generalized lambda with parameters λ1 = 0, λ2 = −1, λ3 = −0.001, λ4 =
−0.13 (β1 = 3.16, β2 = 23.8).

(A5) Generalized lambda with parameters λ1 = 0, λ2 = −1, λ3 = −0.0001, λ4 =
−0.17 (β1 = 3.88, β2 = 40.7).3

For d 6= 0, artificial data are generated via the infinite-order moving-average

representation of the ARFIMA process (11) truncated after the first 1,000 terms.4

We consider two sample sizes n ∈ {100, 300}, and take the order of the sieve ap-
proximation to be the minimizer of the AIC over the range 1 6 p 6 b2(log n)2c,
bxc denoting the integral part of x. The approximating autoregression is fitted by
the method of least squares (which is preferred here over the Yule—Walker method

because it is known to produce estimates that exhibit smaller finite-sample bias).

3The generalized lambda distribution is most easily specified via its quantile function, which is

K(u) = λ1 + λ−12 {uλ3 − (1 − u)λ4}, u ∈ (0, 1) (Ramberg and Schmeiser (1974)). The parameter
values for (S4), (S5), (A4) and (A5) are taken from Randles, Fligner, Policello, and Wolfe (1980).

4The stationary solution of (11) satisfies (5) with θ1 = −ϕ+ϑ+η1 and θj = −θj−1ϕ+ηj−1ϑ+ηj
for j > 2, where ηi := {Γ(1 + i)Γ(d)}−1Γ(d+ i) for i ∈ N.
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Bootstrap approximations are constructed from N = 500 bootstrap replicates, while

the number of Monte Carlo replications per experiment is 1,000.

The tests we consider are based on the statistic Sψ defined in (2) with the

following four functions ψ: ψ1(x) := x3, ψ2(x) := x/(1+x2), ψ3(x) := arctanx, and

ψ4(x) := sgnx. We note that ψ1 is related to a skewness-type test, ψ2 is associated

with the test proposed by Chen, Chou, and Kuan (2000), ψ3 is associated with the

test of Premaratne and Bera (2005), and ψ4 is related to the sign test of Gastwirth

(1971).

The Monte Carlo Type-I error probabilities of tests of nominal level α = 0.05

are shown in Table 1. The bootstrap tests perform reasonably well across the values

of d and the different noise distributions considered. The error in the rejection

probability of tests based on ψ1, ψ2 and ψ3 is more pronounced for highly leptokurtic

distributions such as (S4) and (S5) when n = 100. Even in such cases, however,

deviations of the empirical rejection probabilities from the nominal level are not so

large as to render the tests unattractive for applications.

It may be useful to note that one possible way of improving the reliability of the

tests in terms of small-sample Type-I error probability may be by calibrating their

level, an idea that dates back to Loh (1987) and Beran (1988). Choi and Hall (2000)

demonstrated that, in the presence of short-range dependence, such calibration can

deliver sieve bootstrap confidence intervals that are second-order accurate. To my

knowledge, analogous results are currently unavailable for long-range dependent or

antipersistent processes.

Table 2 contains the Monte Carlo rejection rates of the tests when the null

hypothesis of symmetry is false. It is evident that rejection rates improve with

increasing sample size and smaller values of the memory parameter. Asymmetry of

the marginal distribution of {Xt} is detected with high probability when d = −0.1
or d = 0. In the presence of long-range dependence, however, all the tests considered

generally suffer a loss in power, the results being quite sensitive to the strength of

dependence. Tests based on ψ2 and ψ3 still have respectable rejection rates for

d = 0.25 and n = 300 (and noise distributions other than (A1)), but no test is

particularly successful at detecting deviations from symmetry when d = 0.4.
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5 Empirical Illustrations

In this section, we illustrate the practical use of the proposed methods by analyzing

two real data sets.

5.1 Realized Volatility

In our first application, we examine the symmetry properties of empirical measures

of stock return variability. The use of model-free volatility measures constructed

from high-frequency intra-day returns on financial assets has become very popular

in recent years. Such measures are typically reported to exhibit long-range depen-

dence and to have an asymmetric marginal distribution which becomes approxi-

mately symmetric (or even Gaussian) after a logarithmic transformation (see, e.g.,

Andersen, Bollerslev, Diebold, and Ebens (2001); Andersen, Bollerslev, Diebold,

and Labys (2001)).

The analysis is based on individual stocks of five companies in the Dow Jones

Industrial Average index, namely Boeing Co. (BA), Caterpillar Inc. (CAT), Coca-

Cola Co. (KO), Merck & Co. Inc. (MRK), and Pfizer Inc. (PFE). The raw data

consist of tick-by-tick quotes, extracted from the NYSE Trade and Quote database,

for the period from January 2, 2003 to December 31, 2007, a total of 1,258 trading

days. The data are used to construct two nonparametric measures of daily volatil-

ity: the standard realized volatility (RV) measure (sum of squared intra-day returns)

at a five-minute sampling frequency and the two-scales realized volatility (TSRV)

measure of Zhang, Mykland, and Aït-Sahalia (2005) with five-minute grids. RV is

extensively used in the literature and generally performs well in data-based com-

parisons of alternative volatility estimators (see Liu, Patton, and Sheppard (2012)).

TSRV is known to have good statistical properties (as an estimator of the latent

quadratic variation of the efficient logarithmic price process) in the presence of mar-

ket microstructure noise.

In Tables 3 and 4, we show summary statistics for each of the two raw volatility

measures, its natural logarithm and its multiplicative inverse. The inverse trans-

formation was recommended by Gonçalves and Meddahi (2011) as a means of im-
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proving the accuracy of confidence intervals for quadratic variation based on RV.

A semiparametric estimate (d̂) of the memory parameter of each volatility series is

also reported. This is obtained using the local Whittle estimator (Künsch (1987);

Robinson (1995)) with bandwidth set equal to b{16(−2.19ĉ)2}−1/5n4/5c, where ĉ is
the least-squares estimate of the third coefficient in the pseudo-regression of log I(ωi)

on (1,−2 logωi,
1
2
ω2i ), for i = 1, 2, . . . , b0.3n8/9c, I(ωi) being the periodogram ordi-

nate of the observations Xn at the Fourier frequency ωi := 2πi/n (cf. Henry and

Robinson (1996); Andrews and Sun (2004)).

The marginal distributions of RV and TSRV are leptokurtic and skewed for all

stocks. The logarithmic transformation reduces skewness and kurtosis substantially,

a finding which is in line with empirical observations made in other studies; the same

is also true for the inverse transformation in the majority of cases. The estimated

value of the memory parameter is significantly different from zero for most of the

series and, in the case of logarithmic and inverse volatility measures, fairly close

to the “typical value” of 0.4 that is frequently reported in the literature (see, e.g.,

Andersen, Bollerslev, Diebold, and Ebens (2001); Andersen, Bollerslev, Diebold,

and Labys (2001)).

Bootstrap P -values for tests of symmetry based on the four functions ψ used

previously in Section 4 are shown in Tables 5 and 6; the cases in which a 90%

bootstrap confidence interval for ζψ, constructed as in (9), contains the value zero are

also indicated. Bootstrap approximations are computed from N = 2, 000 bootstrap

replicates, with the sieve order estimated as the minimizer of the AIC over the range

1 6 p 6 b2(logn)2c. Symmetry is rejected by tests based on Sψ2, Sψ3 and Sψ4 for all
RV and TSRV series. The skewness-type statistic Sψ1 and the confidence interval

for ζψ1 do not provide strong evidence against symmetry for two RV series (KO

and PFE) and two TSRV series (BA and KO). In the case of logarithmic TSRV,

symmetry is rejected for all series but KO (and also BA when using ψ1, which is not

perhaps surprising since skewness is relatively small for BA). The evidence against

symmetry is even stronger for logarithmic RV, the only marginal non-rejection being

obtained for KO when using the ψ1 function. Findings are similar for the inverse

volatility measures, with evidence in favor of symmetry being provided by the test
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based on Sψ1 and the confidence interval for ζψ1 only in the case of the inverse

TSRV measure for BA. These results are especially convincing in light of the low

power of tests when the memory parameter is large and positive, and indicate that

distributional symmetry may not be as typical a characteristic of logarithmic and

inverse volatility measures as is often suggested in the literature.

We end by noting that, although realized measures of volatility such as RV and

TSRV are treated as essentially observable, they do contain a sampling error and

should not therefore be thought of as being the same as the true (latent) return

variability. This must be borne in mind when interpreting empirical evidence from

any inferential procedure that makes use of realized volatility measures, not least

because sampling error (and other measurement errors) can potentially conceal the

true features of the latent integrated volatility (cf. Hansen and Lunde (2014); Rossi

and de Magistris (2014)).

5.2 Output Growth

As a second illustration, we examine the symmetry properties of real output growth

rates of G7 economies. DeLong and Summers (1986) characterized business cycle

asymmetry by the asymmetry of the marginal distribution of the growth rate of a

measure of output. This type of asymmetry is referred to by Sichel (1993) as ‘steep-

ness’ (contractions are steeper than expansions, or vice versa), and is an example of

what Ramsey and Rothman (1996) classified as ‘longitudinal’ asymmetry (that is,

asymmetry in the direction of the movement of the business cycle). Nieuwerburgha

and Veldkamp (2006) developed a dynamic stochastic general equilibrium model

which can explain steepness of the business cycle. Although there is a considerable

body of literature on cyclical asymmetry, the empirical findings are generally mixed,

depending on the particular measure of output used and the statistical testing pro-

cedure employed.

The data used in our analysis consist of 139 annual observations, from 1870

through 2008, on real GDP per capita, and are taken from Angus Maddison’s well-

known database (available at www.ggdc.net/maddison/oriindex.htm). Growth
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rates are computed by first-differencing the logarithmically transformed raw data.5

In Table 7, we report the sample skewness coefficient and estimated memory

parameter of the output growth series, as well as bootstrap P -values for tests of

symmetry. All quantities appearing in the table are computed in the same way as

in the application discussed in Section 5.1. The estimated values of the memory pa-

rameter indicate that GDP growth rates exhibit short-range dependence in the case

of France, Italy, Japan and the U.K., but are antipersistent in the case of Canada,

U.S. and (possibly) Germany. This means that the estimated memory parameters

for the (logarithmically transformed) GDP series for the latter three economies are

in the region (1
2
, 1), suggesting that the underlying stochastic processes are nonsta-

tionary but with impulse responses that decay towards zero, albeit at a polynomial

rate. The possibility of antipersistent behavior resulting from ‘overdifferencing’ non-

stationary time series whose order of integration is fractional and less than unity

is an issue that has received virtually no attention in the literature on growth-rate

asymmetry.

Looking at the P -values for the tests based on the four ψ functions, symmetry

is rejected for Canada by all four tests and for the U.K. by tests based on statistics

other than Sψ1 . Confidence intervals for ζψ suggest the presence of asymmetry in

the Canadian, French and U.K. GDP growth rates.

6 Summary

In this paper, we have discussed tests for symmetry (around a specified or unspec-

ified center) of the marginal distribution of a fractionally integrated process. As

a practical means of implementing the tests, we have proposed using a symmetric

sieve bootstrap procedure to estimate finite-sample P -values and/or critical values.

The sieve bootstrap delivers tests which are asymptotically valid for short-range de-

pendent, long-range dependent and antipersistent time series, and does not require

5Needless to say, with such a long span of data issues related to structural stability and regime

change deserve serious consideration; however, for the purposes of this illustration, we abstract

from such issues.
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knowledge (or estimation) of the memory parameter of the data or of the appro-

priate norming factor for the test statistic. Simulation results have shown that the

bootstrap tests performs satisfactorily, although they tend to lack power when the

memory parameter is large and positive. Applications to realized measures of stock

return volatility and real output growth illustrated the practical use of the proposed

procedures.

7 Appendix

Proof of Proposition 1. Noting that, under (A.5), Sψ satisfies the conditions

of Lemma 1 of Poskitt (2008), the required result follows by arguments almost

identical to those used by Poskitt in the proof of his Theorem 2. Specifically, in

view of Poskitt’s Remark 2 regarding mean correction, the only modification to

his proof that needs to be made relates to {ξ∗p,t} in (8) obeying L(ξ∗p,t|Xn) = Q̂p

instead of L(ξ∗p,t|Xn) = Q̂†
p, where Q̂

†
p(A) := (n − p)−1

Pn
t=p+1 1A(

−1
p ξ̂p,t − −1

p ξ̄p).

To accommodate this modification, let (φp,1, . . . , φp,p, σ
2
p) be the solution of the pth-

order Yule—Walker equations
Pp

j=0 φp,jγk−j = δ0,kσ
2
p (k = 0, 1, . . . , p), with φp,0 := 1,

and put ξp,t :=
Pp

j=0 φp,j(Xt−j−μ), t ∈ Z, so that E(ξ2p,t) = σ2p. Upon observing that

{ξp,t − σ̂pξ
∗
p,t} are independent under the conditional probability measure carrying

X∗p, a straightforward calculation yields

E∗

⎛⎝( ∞X
j=0

φ̂p,j
¡
ξp,t−j − σ̂pξ

∗
p,t−j

¢)2⎞⎠ = (n− p)−1
nX

s=p+1

(ξp,s − σ̂p
−1
p ξ̂p,s)

2 ·
∞X
j=0

φ̂
2

p,j,

where φ̂p,j := 0 for j > p and E∗ denotes expectation with respect to X∗p, conditional

on Xn. Furthermore, since −1
p σ̂p = 1+ o(1) (n→∞) almost surely (Poskitt (2008,

p. 247)), we have

(n− p)−1
nX

s=p+1

(ξp,s − σ̂p
−1
p ξ̂p,s)

2 = (n− p)−1
nX

s=p+1

(ξp,s − ξ̂p,s)
2 + o(1), as n→∞,

with the o(1) term being of that order almost surely. Then, it is easy to see that

the arguments in the proof of Poskitt’s Theorem 2 go through unchanged under the

resampling scheme based on Q̂p, and the assertion of the proposition follows. ¥
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Proof of Proposition 2. The second condition of (A.4) holds for p̂ on account of

M(n) = O({log n}τ) for some τ > 1. Hence, it remains to show that p̂ diverges to
infinity with n almost surely. To this end, for each p ∈ N, let ξp,t :=

Pp
j=0 φp,j(Xt−j−

μ), t ∈ Z, φp,0 := 1, be the error associated with the best linear predictor ofXt based

on (Xt−1, . . . , Xt−p). By Theorem 36.4 in Billingsley (1995, p. 495) and the pointwise

ergodic theorem, as n→∞, n−1Pn
t=1 ξ

2
p,t and n

−1Pn
t=1 ξ

2
t converge almost surely to

σ2p =
Pp

j=0 φp,jγj > 0 and σ2, respectively, with σ2p − σ2 → 0 as p→∞. Therefore,
in view of Corollary 1 and Theorem 8 of Poskitt (2007),

C(p) = log σ2 + log
µ
1 +

σ2p − σ2

σ2

¶
+

pf(n)

n
+ o(1), as n→∞,

uniformly in p, with the o(1) term being of that order almost surely. It can now be

seen that the asserted property of p̂ is true, for, if p̂ does not diverge as n→∞, then
(σ2p − σ2)/σ2 remains bounded away from zero for values of p along the p̂ sequence

and, since n−1pf(n) → 0 as n →∞, the minimum of C(p) with respect to p is not
attained. ¥
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Table 1. Percentage Rejection Rates at the 5% Nominal Level

n = 100 n = 300

ψ\d −0.1 0.0 0.25 0.4 −0.1 0.0 0.25 0.4

(S1) ψ1 3.1 5.2 4.2 6.4 4.8 4.8 4.6 4.6

ψ2 5.3 5.0 6.2 8.7 4.9 5.4 5.6 6.3

ψ3 4.8 4.7 6.2 8.6 4.8 5.2 5.5 6.4

ψ4 2.3 4.0 3.8 5.5 3.4 3.5 4.6 5.1

(S2) ψ1 7.3 6.2 4.8 5.6 5.5 5.4 4.3 3.9

ψ2 6.6 6.9 6.9 9.2 5.2 5.2 6.3 6.2

ψ3 6.9 6.1 6.6 8.7 5.3 5.5 5.7 6.0

ψ4 5.4 4.3 4.9 7.1 4.9 5.5 4.6 4.6

(S3) ψ1 8.4 5.8 5.5 6.7 5.3 6.2 4.4 6.3

ψ2 9.1 5.4 8.0 8.5 7.6 6.2 6.4 8.7

ψ3 8.2 5.0 7.7 8.2 7.9 6.2 6.1 8.6

ψ4 4.4 3.7 5.8 6.0 4.6 4.5 5.4 7.3

(S4) ψ1 10.7 12.0 8.0 5.3 7.7 8.4 5.6 4.5

ψ2 8.1 9.4 9.1 8.0 6.6 7.0 6.2 8.1

ψ3 8.8 10.1 9.0 8.1 6.1 7.2 6.1 7.2

ψ4 6.4 7.1 6.2 6.1 4.6 5.6 5.5 7.4

(S5) ψ1 11.0 9.0 7.3 5.6 7.2 7.2 5.0 4.0

ψ2 8.8 7.2 9.4 6.7 6.0 6.7 6.5 8.6

ψ3 9.3 8.0 8.3 7.4 5.9 7.1 6.2 7.2

ψ4 5.0 5.5 6.0 5.3 4.5 4.7 4.8 7.5

Note: The entries have approximate standard error 0.7.
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Table 2. Percentage Rejection Rates at the 5% Nominal Level

n = 100 n = 300

ψ\d −0.1 0.0 0.25 0.4 −0.1 0.0 0.25 0.4

(A1) ψ1 67.9 51.9 12.1 8.20 96.2 93.4 29.9 9.40

ψ2 92.4 77.5 20.3 9.90 100 100 44.3 14.4

ψ3 93.0 80.3 22.0 10.3 100 100 47.8 16.2

ψ4 58.5 44.0 12.9 7.00 98.9 93.3 30.0 11.3

(A2) ψ1 71.4 60.8 16.5 8.20 94.3 92.9 39.5 12.0

ψ2 99.6 95.7 30.3 11.8 100 100 64.0 16.7

ψ3 98.4 94.1 32.2 12.5 100 100 70.4 20.2

ψ4 87.8 72.6 17.7 7.60 100 99.9 46.6 13.5

(A3) ψ1 58.7 48.5 17.3 12.1 80.3 78.7 33.4 10.6

ψ2 98.6 93.0 29.2 14.5 100 99.9 64.4 18.6

ψ3 94.9 88.4 28.9 15.6 99.7 99.8 68.8 22.0

ψ4 85.5 71.6 19.8 8.40 100 99.6 51.9 14.9

(A4) ψ1 62.4 53.3 19.4 11.6 79.7 79.0 33.8 11.8

ψ2 99.4 95.8 34.9 12.5 100 100 73.0 20.5

ψ3 95.4 91.1 34.0 14.7 100 99.8 75.1 24.2

ψ4 91.6 79.9 22.2 8.10 100 100 56.6 16.9

(A5) ψ1 59.0 50.5 20.5 11.2 74.8 71.2 35.5 11.4

ψ2 99.8 97.4 34.4 13.2 100 100 76.9 22.2

ψ3 95.1 91.4 33.7 14.4 99.9 99.8 77.6 25.1

ψ4 95.2 83.2 22.2 8.00 100 100 63.2 18.1

Note: The entries have approximate standard error at most 1.6.
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Table 3. Summary Statistics for RV

Mean Median Std. Dev. Skewness Kurtosis d̂

RV

BA 1.8507 1.3335 2.0493 9.2524 148.80 0.4341 (0.0687)

CAT 1.9228 1.5100 1.6789 5.9644 68.157 0.3486 (0.0542)

KO 0.9866 0.7157 2.2414 27.900 896.74 0.1977 (0.0495)

PFE 1.5312 1.1079 2.4442 13.119 222.50 0.1373 (0.0508)

MRK 1.7754 1.2095 2.5515 8.5515 101.57 0.1419 (0.0527)

Logarithmic RV

BA 0.3501 0.2878 0.6789 0.5099 3.6885 0.4606 (0.0530)

CAT 0.4508 0.4121 0.5991 0.4921 3.9016 0.4224 (0.0556)

KO -0.2982 -0.3345 0.6521 0.6028 5.5246 0.4416 (0.0442)

PFE 0.1586 0.1025 0.6253 0.9071 6.1126 0.3609 (0.0488)

MRK 0.2679 0.1902 0.6783 0.9119 5.4261 0.3353 (0.0359)

Inverse RV

BA 0.8680 0.7499 0.5698 1.7310 8.2696 0.4171 (0.0495)

CAT 0.7518 0.6622 0.4400 1.4846 6.2517 0.4118 (0.0516)

KO 1.6400 1.3972 1.1266 3.4940 35.807 0.3938 (0.0521)

PFE 1.0124 0.9026 0.5844 1.3099 5.7063 0.3499 (0.0387)

MRK 0.9328 0.82680 0.6005 2.3568 15.895 0.3487 (0.0493)

Note: Figures in parentheses are asymptotic standard errors.
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Table 4. Summary Statistics for TSRV

Mean Median Std. Dev. Skewness Kurtosis d̂

TSRV

BA 1.6155 1.2234 1.3427 4.0552 41.069 0.4252 (0.0539)

CAT 1.7537 1.4371 1.2460 2.9464 16.602 0.3794 (0.0546)

KO 0.8555 0.6491 1.2217 20.882 589.15 0.3191 (0.0552)

PFE 1.3466 1.0082 2.0408 14.861 288.11 0.1605 (0.0483)

MRK 1.5921 1.1442 2.2274 10.227 141.32 0.1396 (0.0516)

Logarithmic TSRV

BA 0.2449 0.2017 0.6682 0.1944 3.4242 0.4598 (0.0536)

CAT 0.3846 0.3626 0.5749 0.3319 3.3536 0.4358 (0.0556)

KO -0.4041 -0.4322 0.6550 0.2630 4.5477 0.4613 (0.0453)

PFE 0.0423 0.0082 0.6320 0.6167 5.4661 0.3594 (0.0454)

MRK 0.1842 0.1347 0.6636 0.7049 5.1932 0.3630 (0.0447)

Inverse TSRV

BA 0.9754 0.8174 0.8586 11.092 245.57 0.3535 (0.0556)

CAT 0.7957 0.6959 0.4565 1.4819 6.3034 0.4202 (0.0522)

KO 1.8505 1.5407 1.4533 4.8089 48.669 0.3607 (0.0449)

PFE 1.1524 0.9918 0.7432 2.2671 13.343 0.3200 (0.0374)

MRK 1.0146 0.8740 0.6886 3.2067 29.004 0.3478 (0.0427)

Note: Figures in parentheses are asymptotic standard errors.
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Table 5. P -Values for Symmetry Tests on RV

ψ1 ψ2 ψ3 ψ4

RV

BA 0.0255 0.0000 0.0000 0.0000

CAT 0.0635 0.0000 0.0000 0.0000

KO 0.1365∗ 0.0030 0.0270 0.0000

PFE 0.1015∗ 0.0000 0.0000 0.0000

MRK 0.0325 0.0000 0.0000 0.0000

Logarithmic RV

BA 0.0130 0.0005 0.0005 0.0005

CAT 0.0110 0.0005 0.0005 0.0110

KO 0.1040∗ 0.0400 0.0410 0.0595

PFE 0.0005 0.0005 0.0005 0.0005

MRK 0.0015 0.0000 0.0000 0.0005

Inverse RV

BA 0.0000 0.0000 0.0000 0.0000

CAT 0.0000 0.0000 0.0000 0.0000

KO 0.1060 0.0000 0.0000 0.0000

PFE 0.0000 0.0000 0.0000 0.0000

MRK 0.0030 0.0000 0.0000 0.0000

Note: An asterisk indicates that a 90% confidence

interval for ζψ contains the value 0.
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Table 6. P -Values for Symmetry Tests on TSRV

ψ1 ψ2 ψ3 ψ4

TSRV

BA 0.1200∗ 0.0000 0.0000 0.0000

CAT 0.0000 0.0000 0.0000 0.0000

KO 0.1655∗ 0.0150 0.0425 0.0090

PFE 0.0215 0.0000 0.0030 0.0000

MRK 0.0360 0.0000 0.0000 0.0000

Logarithmic TSRV

BA 0.2075∗ 0.0160 0.0345 0.0115

CAT 0.0135 0.0085 0.0070 0.0085

KO 0.2680∗ 0.2425∗ 0.2520∗ 0.2820∗

PFE 0.0070 0.0165 0.0115 0.0205

MRK 0.0055 0.0000 0.0005 0.0005

Inverse TSRV

BA 0.1270∗ 0.0045 0.0195 0.0010

CAT 0.0000 0.0000 0.0000 0.0000

KO 0.0130 0.0000 0.0000 0.0000

PFE 0.0000 0.0000 0.0000 0.0000

MRK 0.0380 0.0000 0.0000 0.0000

Note: An asterisk indicates that a 90% confidence

interval for ζψ contains the value 0.

32



Table 7. GDP Growth Rates

P -Value

Skewness d̂ ψ1 ψ2 ψ3 ψ4

Canada -0.8116 -0.3690 (0.1213) 0.0045 0.0235 0.0080 0.0355

France 0.5279 -0.1072 (0.1508) 0.3980∗ 0.1665 0.1295 0.1930

Germany -5.3317 -0.3176 (0.1291) 0.1025 0.3160∗ 0.2060∗ 0.2595∗

Italy -0.9993 0.0449 (0.1213) 0.4075∗ 0.5275∗ 0.2800∗ 0.4475∗

Japan -5.7143 0.0659 (0.1250) 0.1330∗ 0.6855∗ 0.6430∗ 0.9510∗

U.K. -0.8865 -0.1681 (0.1213) 0.1425 0.0065 0.0240 0.0410

U.S. -0.7533 -0.4725 (0.1043) 0.2180∗ 0.5460∗ 0.5945∗ 0.4880∗

Note: An asterisk indicates that a 90% confidence interval for ζψ contains the value 0.

Figures in parentheses are asymptotic standard errors.
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