75 research outputs found

    Economic analysis of flood and center pivot irrigation system modifications, An

    Get PDF
    Presented at the Central Plains irrigation short course and exposition on February 4, 1997 at the Colby Community Building in Colby, Kansas.Includes bibliographical references.An after-tax net present value(NPV) analysis of investing in three irrigation system modifications for the production of corn, grain sorghum, wheat, and alfalfa is conducted. Modifying a high pressure center pivot with low-drift nozzles and adding surge valves to a gated pipe system is economically feasible for each crop

    Net Returns for Grain Sorghum and Corn under Alternative Irrigation Systems in Western Kansas

    Get PDF
    This study evaluates seven irrigation systems for use in production of grain sorghum and corn. These systems are medium pressure center-pivot (MPCP), low pressure center-pivot (LPCP), low drift nozzle center-pivot (LDN) , low energy precision application center-pivot (LEPA), furrow flood (FF) , surge flood (SF), and subsurface drip (SD). After-tax net present value estimates from investing in and using each system over a 10-year period to produce grain sorghum and corn are compared. The surge flood system, has the highest net returns under typical conditions for irrigation of both grain sorghum and corn. The furrow flood system generates the next highest net returns for both crops, followed by the subsurface drip system. The medium pressure center-pivot system is the least profitable for both crops. Of the center-pivot systems, the low pressure system has the highest net return, but is followed very closely by the low drift nozzle system. The results of the sensitivity analysis indicate that the net return estimates and ranking of the subsurface drip system are very sensitive to the yield response to irrigation. Lower than average crop prices also have a substantial impact on the ranking of this system. The original investment cost is also an important determinant of its net return.Crop Production/Industries,

    Interactive effects of vascular risk burden and advanced age on cerebral blood flow.

    Get PDF
    Vascular risk factors and cerebral blood flow (CBF) reduction have been linked to increased risk of cognitive impairment and Alzheimer's disease (AD); however the possible moderating effects of age and vascular risk burden on CBF in late life remain understudied. We examined the relationships among elevated vascular risk burden, age, CBF, and cognition. Seventy-one non-demented older adults completed an arterial spin labeling MR scan, neuropsychological assessment, and medical history interview. Relationships among vascular risk burden, age, and CBF were examined in a priori regions of interest (ROIs) previously implicated in aging and AD. Interaction effects indicated that, among older adults with elevated vascular risk burden (i.e., multiple vascular risk factors), advancing age was significantly associated with reduced cortical CBF whereas there was no such relationship for those with low vascular risk burden (i.e., no or one vascular risk factor). This pattern was observed in cortical ROIs including medial temporal (hippocampus, parahippocampal gyrus, uncus), inferior parietal (supramarginal gyrus, inferior parietal lobule, angular gyrus), and frontal (anterior cingulate, middle frontal gyrus, medial frontal gyrus) cortices. Furthermore, among those with elevated vascular risk, reduced CBF was associated with poorer cognitive performance. Such findings suggest that older adults with elevated vascular risk burden may be particularly vulnerable to cognitive change as a function of CBF reductions. Findings support the use of CBF as a potential biomarker in preclinical AD and suggest that vascular risk burden and regionally-specific CBF changes may contribute to differential age-related cognitive declines

    Assessing the Value of Moving More-The Integral Role of Qualified Health Professionals

    Get PDF
    Being physically active or, in a broader sense, simply moving more throughout each day is one of the most important components of an individual's health plan. In conjunction with regular exercise training, taking more steps in a day and sitting less are also important components of one's movement portfolio. Given this priority, health care professionals must develop enhanced skills for prescribing and guiding individualized movement programs for all their patients. An important component of a health care professional's ability to prescribe movement as medicine is competency in assessing an individual's risk for untoward events if physical exertion was increased. The ability to appropriately assess one's risk before advising an individual to move more is integral to clinical decision-making related to subsequent testing if needed, exercise prescription, and level of supervision with exercise training. At present, there is a lack of clarity pertaining to how a health care professional should go about assessing an individual's readiness to move more on a daily basis in a safe manner. Therefore, this perspectives article clarifies key issues related to prescribing movement as medicine and presents a new process for clinical assessment before prescribing an individualized movement program

    British signals intelligence and the 1916 Easter Rising in Ireland

    Get PDF
    Historians for decades have placed Room 40, the First World War British naval signals intelligence organization, at the centre of narratives about the British anticipation of and response to the Easter Rising in Ireland in 1916. A series of crucial decrypts of telegrams between the German embassy in Washington and Berlin, it has been believed, provided significant advance intelligence about the Rising before it took place. This article upends previous accounts by demonstrating that Room 40 possessed far less advance knowledge about the Rising than has been believed, with most of the supposedly key decrypts not being generated until months after the Rising had taken place

    Reduced Regional Cerebral Blood Flow Relates to Poorer Cognition in Older Adults With Type 2 Diabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) increases risk for dementia, including Alzheimer’s disease (AD). Many previous studies of brain changes underlying cognitive impairment in T2DM have applied conventional structural magnetic resonance imaging (MRI) to detect macrostructural changes associated with cerebrovascular disease such as white matter hyperintensities or infarcts. However, such pathology likely reflects end-stage manifestations of chronic decrements in cerebral blood flow (CBF). MRI techniques that measure CBF may (1) elucidate mechanisms that precede irreversible parenchymal damage and (2) serve as a marker of risk for cognitive decline. CBF measured with arterial spin labeling (ASL) MRI may be a useful marker of perfusion deficits in T2DM and related conditions. We examined associations among T2DM, CBF, and cognition in a sample of 49 well-characterized nondemented older adults. Along with a standard T1-weighted scan, a pseudocontinuous ASL sequence optimized for older adults (by increasing post-labeling delays to allow more time for the blood to reach brain tissue) was obtained on a 3T GE scanner to measure regional CBF in FreeSurfer derived regions of interest. Participants also completed a neuropsychological assessment. Results showed no significant differences between individuals with and without T2DM in terms of cortical thickness or regional brain volume. However, adjusting for age, sex, comorbid vascular risk factors, and reference CBF (postcentral gyrus) older adults with T2DM demonstrated reduced CBF in the hippocampus, and inferior temporal, inferior parietal, and frontal cortices. Lower CBF was associated with poorer memory and executive function/processing speed. When adjusting for diabetes, the significant associations between lower regional CBF and poorer executive function/processing speed remained. Results demonstrate that CBF is reduced in older adults with T2DM, and suggest that CBF alterations likely precede volumetric changes. Notably, relative to nondiabetic control participants, those with T2DM showed lower CBF in predilection sites for AD pathology (medial temporal lobe and inferior parietal regions). Findings augment recent research suggesting that perfusion deficits may underlie cognitive decrements frequently observed among older adults with T2DM. Results also suggest that CBF measured with ASL MRI may reflect an early and important marker of risk of cognitive impairment in T2DM and related conditions

    Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38α Kinase

    Get PDF
    The vast majority of small molecules known to modulate kinase activity, target the highly conserved ATP-pocket. Consequently, such ligands are often less specific and in case of inhibitors, this leads to the inhibition of multiple kinases. Thus, selective modulation of kinase function remains a major hurdle. One of the next great challenges in kinase research is the identification of ligands which bind to less conserved sites and target the non-catalytic functions of protein kinases. However, approaches that allow for the unambiguous identification of molecules that bind to these less conserved sites are few in number. We have previously reported the use of fluorescent labels in kinases (FLiK) to develop direct kinase binding assays that exclusively detect ligands which stabilize inactive (DFG-out) kinase conformations. Here, we present the successful application of the FLiK approach to develop a high-throughput binding assay capable of directly monitoring ligand binding to a remote site within the MAPK insert of p38α mitogen-activated protein kinase (MAPK). Guided by the crystal structure of an initially identified hit molecule in complex with p38α, we developed a tight binding ligand which may serve as an ideal starting point for further investigations of the biological function of the MAPK insert in regulating the p38α signaling pathway

    Crystallographic and Molecular Dynamics Analysis of Loop Motions Unmasking the Peptidoglycan-Binding Site in Stator Protein MotB of Flagellar Motor

    Get PDF
    Background: The C-terminal domain of MotB (MotB-C) shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG)-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. Methodology/Principal Findings: We determined the structure of a new crystalline form (Form B) of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the b-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. Conclusion/Significance: Our structural analysis provides a new insight into the mechanism by which MotB inserts into th
    • …
    corecore