664 research outputs found

    High speed electric motors based on high performance novel soft magnets

    Get PDF
    Novel Co-based soft magnetic materials are presented as a potential substitute for electrical steels in high speed motors for current industry applications. The low losses, high permeabilities, and good mechanical strength of these materials enable application in high rotational speed induction machines. Here, we present a finite element analysis of Parallel Path Magnetic Technology rotating motors constructed with both silicon steel and Co-based nanocomposite. The later achieved a 70% size reduction and an 83% reduction on NdFeB magnet volume with respect to a similar Si-steel design.Fil: Silveyra, Josefina María. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica. Laboratorio de Sólidos Amorfos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina; ArgentinaFil: Leary, A. M.. University Of Carnegie Mellon; Estados UnidosFil: DeGeorge, V.. University Of Carnegie Mellon; Estados UnidosFil: Simizu, S.. Advanced Materials Corporation; Estados UnidosFil: McHenry, M. E.. University Of Carnegie Mellon; Estados Unido

    Artificial Intelligence Approach to the Determination of Physical Properties of Eclipsing Binaries. I. The EBAI Project

    Full text link
    Achieving maximum scientific results from the overwhelming volume of astronomical data to be acquired over the next few decades will demand novel, fully automatic methods of data analysis. Artificial intelligence approaches hold great promise in contributing to this goal. Here we apply neural network learning technology to the specific domain of eclipsing binary (EB) stars, of which only some hundreds have been rigorously analyzed, but whose numbers will reach millions in a decade. Well-analyzed EBs are a prime source of astrophysical information whose growth rate is at present limited by the need for human interaction with each EB data-set, principally in determining a starting solution for subsequent rigorous analysis. We describe the artificial neural network (ANN) approach which is able to surmount this human bottleneck and permit EB-based astrophysical information to keep pace with future data rates. The ANN, following training on a sample of 33,235 model light curves, outputs a set of approximate model parameters (T2/T1, (R1+R2)/a, e sin(omega), e cos(omega), and sin i) for each input light curve data-set. The whole sample is processed in just a few seconds on a single 2GHz CPU. The obtained parameters can then be readily passed to sophisticated modeling engines. We also describe a novel method polyfit for pre-processing observational light curves before inputting their data to the ANN and present the results and analysis of testing the approach on synthetic data and on real data including fifty binaries from the Catalog and Atlas of Eclipsing Binaries (CALEB) database and 2580 light curves from OGLE survey data. [abridged]Comment: 52 pages, accepted to Ap

    Individual Commitment to Entrepreneurial Opportunities within Firms: Does Intuition – Based Behavior Matter?

    Get PDF
    The aim of this qualitative study is to identify how the perceptions of the entrepreneur on the nature of the opportunity (objective reality / social construction) and his/her cognitive style (analytical / intuitive) influence the process of commitment to opportunity (analytic process / intuition-based process). Our findings indicate that entrepreneurs with previous opportunity exploitation experience perceive systematically opportunities as social constructions. The individual commitment process to entrepreneurial opportunities perceived as objective realities is analytical, while this process to opportunities perceived as social constructions can be intuition-based, analytical, or mixed. Size and industry seem to have a strong influence on the choice of process type

    Cholinergic stimulation of arachidonic acid and phosphatidic acid metabolism in C62B glioma cells

    Get PDF
    Glioma C62B cells were incubated for 18 h with [1-14C]arachidonic acid. Most (80%) of the added [1-14C] arachidonic acid was taken into the intracellular pool; less than 1% of the intracellular [1-14C]arachidonic acid remained unesterified; the rest was present in glycerophospholipids. Acetylcholine stimulation of the prelabeled cells resulted in the rapid accumulation of free [1-14C]arachidonic acid, presumably liberated by hydrolysis from phospholipids. Labeled unesterified [1-14C]arachidonic acid peaked by 90 s and returned to basal levels by 5 min. Paralleling the transient increase of unesterified [1-14C]arachidonic acid were increases in level of radioactivity in an unidentified lipoxygenase metabolite of arachidonic acid and of radioactive phosphatidic acid. The release of arachidonic acid induced by acetylcholine or carbachol was blocked by muscarinic but not nicotinic receptor antagonists; adrenergic or histaminergic receptor agonists were ineffective at stimulating arachidonic acid liberation. In contrast to the transient effects of stimulation with cholinergic agonists, stimulation with the divalent cation ionophore A23187 resulted in a linear increase in the accumulation of liberated arachidonic acid for at least 1 h. Furthermore, the pattern of metabolites synthesized from arachidonic acid in response to ionophore stimulation was more complex than that observed following cholinergic stimulation and included also several metabolites derived from cyclooxygenase activity. We conclude that muscarinic receptor agonists rapidly induce specific changes in arachidonic acid and phosphatidic acid metabolism in a glioma cell line and suggest that similar responses may occur in glial cells and play a physiologically significant role in neural metabolism

    Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    Full text link
    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of +/- 2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow velocities up to 15 ms-1; the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar; Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8 pages, 7 figure
    corecore