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Novel Co-based soft magnetic materials are presented as a potential substitute for electrical steels

in high speed motors for current industry applications. The low losses, high permeabilities, and

good mechanical strength of these materials enable application in high rotational speed induction

machines. Here, we present a finite element analysis of Parallel Path Magnetic Technology rotating

motors constructed with both silicon steel and Co-based nanocomposite. The later achieved a 70%

size reduction and an 83% reduction on NdFeB magnet volume with respect to a similar Si-steel

design. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864247]

I. INTRODUCTION

Integration of electric motors in military, industry, and

transportation sectors and household appliances, drives

efforts to reduce the size of the motors while increasing their

output power. The ratio of the output power to motor vol-

ume, output power density (W/L), characterizes compactness

of an electric motor design.

High speed electric motors offer good output power den-

sity. A limitation to reducing their size, weight, and cost is per-

formance of permanent and soft magnets at high speeds. High

energy density permanent magnets are based on rare earth

intermetallic compounds. The availability of rare earth ele-

ments (REEs) may be at risk as �80% of the strategic materi-

als are produced in China.1 Mining of individual REEs can be

expensive and a source of environmental concern.2 Thus,

transformational technology to limit REEs use is needed for

high output power and torque density motors.3,4

Performance aimed at limiting reliance on REEs can be

addressed by using state-of-the-art soft magnets to develop

electric motors containing less REEs. New soft magnet nano-

composites reach high flux densities with low core losses at

high frequencies due in part to the higher resistivity of the

amorphous matrix. High frequencies are required for high

speed electric actuators and motors, including switched

reluctance and hybrid motors (with both soft and hard

magnets). Fe-rich amorphous soft magnetic materials have

been incorporated into stators for high-speed motors,5 but

nanocomposites offer higher thermal stability.

A new class of Fe-Co-based amorphous and nanocompo-

site materials, HiTperms,6–12 show promise for high fre-

quency applications. Low losses, tunable anisotropies, and

robust mechanical properties suggest their use in high effi-

ciency, high speed motors both at room temperature and

operating temperatures >300 �C. For motors where material

strength is critical, Co-rich compositions offer good soft

magnetic properties without the brittleness found in Fe-rich

alloys. While these compositions have lower saturation

inductions compared to other HiTperms,13 they have superior

mechanical properties. Here, we discuss more efficient

machines enabled by state-of-the-art magnetic materials.

II. SOFT MAGNETIC MATERIALS FOR HIGH SPEED
ELECTRIC MACHINES

The output power of an electric motor is P ¼ x � T, where

x is the angular speed and T is its torque. High power densities

(torque per unit volume) are achieved by running at the highest

speed. Rotor speed depends on the number of poles and

switching frequency. The speed is often limited by mechanical

strength and practical gearing requirements, but even before

that, increasing power loss imposes severe constraints. The

cooling capability of the machine limits the power loss density.

For air-cooled machines, the power loss density of the mag-

netic material is usually limited to approximately 300 W/L.

Losses in soft magnetic materials arise from hysteric

phenomena that can be separated into three different contri-

butions with different power law dependences on frequency:

static hysteresis loss (proportional to the switching fre-

quency), classical eddy current loss, and anomalous or

excess loss.14 The last two contributions are due to the elec-

tric currents induced in the magnetic material. The classical

eddy current loss of a material under unidirectional sinusoi-

dal magnetization is Pclass � p2rt2B2
pf 2=6,14 where t is the

material thickness and r its conductivity. Excess loss is

related to the domain wall motion in the material. Static hys-

teresis loss dominates at low frequencies while eddy currents

dominate at high switching frequencies. As a composite sys-

tem, a fit to a single Steinmetz equation represents the data

well. A more detailed analysis might reveal some variation

of the Steinmetz power laws with frequency, but as a practi-

cal predictive tool, these fits are adequate.

M-19 non-oriented silicon steel is commonly used for

soft magnetic components of electric motors. This material

has a hysteresis loss density of �10 W/L at 60 Hz and at a
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peak flux density of 0.9 T. The hysteresis loss of HTX-005C

(a HiTperm alloy) under the same conditions is <0.5. This

explained by Alben’s random anisotropy model15 extended

by Herzer;16 when grain dimensions are kept below the fer-

romagnetic exchange length, the anisotropy of homogene-

ously distributed nanocrystals averages to zero.

Approaches to limit eddy current loss focus on stacking

isolated thin magnetic laminations. M-19 thicknesses are

typically 0.36 mm (0.01400). Although materials as thin as

0.12–0.20 mm are being produced, the cold rolling manufac-

turing process currently in vogue precludes significant reduc-

tion of the thickness for silicon steel. HiTperms can be

produced with a thickness in the range of 0.005–0.050 mm.

With its high electrical resistivity and low coercivity,

the iron loss of HTX-005C is much lower than electrical

steels. Co-based materials are more mechanically ductile

than Fe-based nanocomposites and had proven to be

extremely resilient over long operating times.17 HTX-005C

opens up a possibility to develop high output power density

motors running at speeds in well excess of 1000 Hz.

Properties of M-19 electrical steel and Co-based nano-

composite HTX-005C are compared in Table I. Electrical

steel properties are from manufacturers’ data sheets, whereas

the properties of the novel HTX-005C were measured

through conventional techniques.

Fig. 1 shows loss density vs. frequency for M-19 and

HTX-005C. The inset shows the 1 kHz B-H curve. Iron loss

density for M-19 is shown for a 1.5 T peak flux density and

for 0.9 T to allow direct comparison with HTX-005C. A lin-

ear log-log plot for HTX-005C is seen for 10–10,000 Hz

because eddy current loss contributions are small in this fre-

quency range. The curve increases sharply for M-19 above

200 Hz due to the dominating effect of eddy current loss.

Limiting the iron loss density to 300 W/L for air-cooled

machines, the switching frequency has to be lower than

600 Hz for M-19 G29/0.9 T (3600 rpm if the machine

employs just two poles), but it can be as high as 2830 Hz

for HTX-005C/0.9 T (170 000 rpm again for a conventional

2-pole motor). Furthermore, the maximum switching fre-

quency and speed limits can be increased if the peak flux

density is reduced; e.g., 13 kHz for HTX-005C/0.2 T.

These frequencies are attractive for high speed machines

currently required in several industry applications, e.g., a

7000 kW/14 700 rpm motor driven compressor for the oil

industry,18 a 220 kW730 000 rpm motor for turbo-machinery

applications,19 a 21 kW/50 000 rpm motor to drive a small

compressor in industrial cooling applications,20 a

15 kW/120 000 rpm motor for air blower cooling fuel cells,19

and a 2 kW/150 000 rpm switched reluctance motor drive

system.21 A state-of-the-art survey of high speed electrical

machines is presented in Ref. 22.

III. HITPERMS AND PPMT MACHINES

Another strategy to design higher efficiency motors is to

exploit novel HiTperm soft magnets and to improve the elec-

tromechanical design of the device. A novel motor architec-

ture that can achieve significant peak power density with low

or no rare earth content23 is based on the Parallel Path

Magnetic Technology (PPMT). In this magnetic circuit, field

coils are used for two purposes: to provide driving flux and

to switch the magnetic flux generated by hard magnets. A

PPMT generator produces greater output power density with

cooler operation due to their better efficiency than conven-

tional technologies. PPMT can be applied to virtually any

electromagnetic application that produces a holding force or

any motion; rotary motors, linear actuators, and generators.

PPMT device actuators and motor speeds are limited only

by the magnetic materials performance and inertial

constraints.24–26 We show the advantages of using HTX-

005 C soft magnet in comparison to M-19 G29 in a PPMT

rotary motor reported in Ref. 25 (Fig. 2).

All motors are designed to give the same output power

and with iron loss limited to 300 W/L. The maximum

TABLE I. Comparison of electrical steel and HTX properties for motors.

Peak flux density (Bp), dc coercivity (HC), loss, and conductivity (r) are

given at room temperature.

Material

M-19 G29

Silicon steel

HTX-005C Co-based

nanocomposite

Manufacturing process Rolling Planar flow casting

Thickness (mm) 0.36 0.010

Typical Bp (T) 1.5 0.9

HC (A/m) 42.5 20

r (S/m) 2� 106 1.1� 106

Loss at 60 Hz and typical Bp (W/L) 26 2.3
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FIG. 1. Comparison of iron loss for M-19 G29 (BP¼ 1.5 and 0.9 T) and

HTX-005C (BP¼ 0.9 T) vs. f. Horizontal dashed line shows a 300 W/L iron

loss limit of air-cooled machines. Inset: hysteresis loop of HTX-005C at 1 kHz.

FIG. 2. Rotary PPMT motor. The rotor is built with a soft magnet (light grey)

and is mounted on a non-magnetic shaft. The stator is built with hard (dark

grey) and soft magnets (light grey). The coils are located in the black areas.
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switching frequencies (for the 300 W/L iron loss limit) for

M-19 G29 at 1.5 and 0.9 T and HTX-005 C at 0.9 T are used

to calculate the maximum angular speeds of PPMT motors

as the one of Fig. 2 (1200, 2320, and 11320 rpm, respec-

tively). We set the output power to 10 kW. This value and

the angular speeds (in rad/s) are used to calculate the

required torques of the motors (80, 41, and 8.4 Nm, respec-

tively). The motor built with HTX-005 C runs at lower tor-

que but at higher speed than the motors built with M-19.

Since we set the output power arbitrarily, we prefer to show

the scalability of the results at lower and higher output power

as a separate stand-alone result that considers both the ther-

mal and inertial constraints as well as strength of materials

issues. This extended work is in progress. The single power

used here serves the purpose of demonstrating the size scal-

ing which is the main point of this paper.

The constitutive relations and Maxwell’s laws are used

to describe the magnetic circuit of the motor in 2D and to

calculate device dimensions. All machines use the same per-

manent magnets (NdFeB, HC¼ 890 000 A/m) and have the

same dimension ratios (e.g., length to motor radius ratio is

1:1). A first approach of a static model with linear and iso-

tropic materials is followed in this work. Soft magnets are

simulated with the permeabilities corresponding to the oper-

ating switching frequencies and peak flux densities.

ANSYS finite element (FEM) analyses were used to ver-

ify the output torques of PPMT motors. Relative sizes and

flux densities are shown in Fig. 3.

The machine built with HTX-005 C operating at

Bp¼ 0.9 T is 70% smaller than the machine with M-19 G29

Bp¼ 1.5 T, i.e., the power density is more than 2 times higher.

Moreover, the HTX-005C/0.9 T motor needs 83% less rare

earth permanent magnet than the M-19 G29/1.5 T motor to

give the same output power at the same power loss limit.

IV. CONCLUSIONS

New Co-based soft magnetic nanocomposites have very

low power loss at high switching frequencies, tunable aniso-

tropies, and robust mechanical properties both at room tem-

perature and at operating temperatures as high as 300 �C. We

demonstrated a large size reduction (70%) of a PPMT rotary

motor when using HTX-005C alloy instead of the conven-

tional M-19 G29 electrical steel. Furthermore, we could

reduce the scarce and high cost NdFeB magnets by up to

83%. HTX-005C opens up a possibility to develop high out-

put power density motors running at high speeds with

switching frequencies higher than 2.5 kHz.
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