26 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans

    Get PDF
    Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the DeltagprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the DeltagprD has a much lower PKA activity upon starvation. Transcriptomics and (1)H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the DeltagprB and DeltagprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in DeltagprB, while in the DeltagprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the DeltagprD strain. The (1)H NMR analysis revealed significant expression of essential amino acids with elevated levels in the DeltagprD strain, compared to the wild-type and DeltagprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface

    No full text
    IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen

    Allergic Rhinitis

    No full text
    corecore