11 research outputs found

    The star identification, pointing and tracking system of UVSTAR, an attached payload instrument system for the Shuttle Hitchhiker-M platform

    Get PDF
    We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second

    Organic aerosol components derived from 25 AMS datasets across Europe using a newly developed ME-2 based source apportionment strategy

    No full text
    Organic aerosols (OA) represent one of the major constituents of submicron particulatematter (PM1) and comprise a huge variety of compounds emitted by different sources.Three intensive measurement field campaigns to investigate the aerosol chemical com-position all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May–June and September–October) and2009 (February–March). In this paper we focus on the identification of the main organicaerosol sources and we propose a standardized methodology to perform source ap-portionment using positive matrix factorization (PMF) with the multilinear engine (ME-2)on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote andhigh altitude sites and therefore it is likely suitable for the treatment of AMS-relatedambient datasets. For most of the sites, four organic components are retrieved, im-proving significantly previous source apportionment results where only a separationin primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA)and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) andlow-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) andmarine-related sources (MSA) are also separated. Finally, our work provides a largeoverview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.ISSN:1680-7375ISSN:1680-736

    High secondary aerosol contribution to particulate pollution during haze events in China

    Get PDF
    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution

    Factors associated with successful median arcuate ligament release in an international, multi-institutional cohort

    Get PDF
    Objective: Prior research on median arcuate ligament syndrome has been limited to institutional case series, making the optimal approach to median arcuate ligament release (MALR) and resulting outcomes unclear. In the present study, we compared the outcomes of different approaches to MALR and determined the predictors of long-term treatment failure. Methods: The Vascular Low Frequency Disease Consortium is an international, multi-institutional research consortium. Data on open, laparoscopic, and robotic MALR performed from 2000 to 2020 were gathered. The primary outcome was treatment failure, defined as no improvement in median arcuate ligament syndrome symptoms after MALR or symptom recurrence between MALR and the last clinical follow-up. Results: For 516 patients treated at 24 institutions, open, laparoscopic, and robotic MALR had been performed in 227 (44.0%), 235 (45.5%), and 54 (10.5%) patients, respectively. Perioperative complications (ileus, cardiac, and wound complications; readmissions; unplanned procedures) occurred in 19.2% (open, 30.0%; laparoscopic, 8.9%; robotic, 18.5%; P < .001). The median follow-up was 1.59 years (interquartile range, 0.38-4.35 years). For the 488 patients with follow-up data available, 287 (58.8%) had had full relief, 119 (24.4%) had had partial relief, and 82 (16.8%) had derived no benefit from MALR. The 1- and 3-year freedom from treatment failure for the overall cohort was 63.8% (95% confidence interval [CI], 59.0%-68.3%) and 51.9% (95% CI, 46.1%-57.3%), respectively. The factors associated with an increased hazard of treatment failure on multivariable analysis included robotic MALR (hazard ratio [HR], 1.73; 95% CI, 1.16-2.59; P = .007), a history of gastroparesis (HR, 1.83; 95% CI, 1.09-3.09; P = .023), abdominal cancer (HR, 10.3; 95% CI, 3.06-34.6; P < .001), dysphagia and/or odynophagia (HR, 2.44; 95% CI, 1.27-4.69; P = .008), no relief from a celiac plexus block (HR, 2.18; 95% CI, 1.00-4.72; P = .049), and an increasing number of preoperative pain locations (HR, 1.12 per location; 95% CI, 1.00-1.25; P = .042). The factors associated with a lower hazard included increasing age (HR, 0.99 per increasing year; 95% CI, 0.98-1.0; P = .012) and an increasing number of preoperative diagnostic gastrointestinal studies (HR, 0.84 per study; 95% CI, 0.74-0.96; P = .012) Open and laparoscopic MALR resulted in similar long-term freedom from treatment failure. No radiographic parameters were associated with differences in treatment failure. Conclusions: No difference was found in long-term failure after open vs laparoscopic MALR; however, open release was associated with higher perioperative morbidity. These results support the use of a preoperative celiac plexus block to aid in patient selection. Operative candidates for MALR should be counseled regarding the factors associated with treatment failure and the relatively high overall rate of treatment failure
    corecore