1,154 research outputs found
Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations
Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another
Recommended from our members
Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program
The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." Gen. Eugene Habiger, a former "Assistant Secretary for Safeguards and Security" at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that "good security is 20% equipment and 80% people." Although eliminating the "human factor" is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture
M-branes and N=2 Strings
The string field theory of N=(2,1) heterotic strings describes a set of
self-dual Yang-Mills fields coupled to self-dual gravity in 2+2 dimensions. We
show that the exact classical action for this field theory is a certain
complexification of the Green-Schwarz/Dirac-Born-Infeld string action, closely
related to the four dimensional Wess-Zumino action describing self-dual gauge
fields. This action describes the world-volume of a 2+2d ``M-brane'', which
gives rise upon different null reductions to critical strings and membranes. We
discuss a number of further properties of N=2 heterotic strings, such as the
geometry of null reduction, general features of a covariant formulation, and
possible relations to BPS and GKM algebras.Comment: 49 pages, harvmac; 1 figure (uses epsf.tex). References adde
Thermal Correlators in Little String Theory
We calculate, using holographic duality, the thermal two-point function in
finite temperature little string theory. The analysis of those correlators
reveals possible instabilities of the thermal ensemble, as in previous
discussions of the thermodynamics of little string theory. We comment on the
dependence of the instability on the spatial volume of the system.Comment: 13 page
On the uniqueness and global dynamics of AdS spacetimes
We study global aspects of complete, non-singular asymptotically locally AdS
spacetimes solving the vacuum Einstein equations whose conformal infinity is an
arbitrary globally stationary spacetime. It is proved that any such solution
which is asymptotically stationary to the past and future is itself globally
stationary.
This gives certain rigidity or uniqueness results for exact AdS and related
spacetimes.Comment: 18pp, significant revision of v
Technologies of sleep research
Sleep is investigated in many different ways, many different species and under many different circumstances. Modern sleep research is a multidisciplinary venture. Therefore, this review cannot give a complete overview of all techniques used in sleep research and sleep medicine. What it will try to do is to give an overview of widely applied techniques and exciting new developments. Electroencephalography has been the backbone of sleep research and sleep medicine since its first application in the 1930s. The electroencephalogram is still used but now combined with many different techniques monitoring body and brain temperature, changes in brain and blood chemistry, or changes in brain functioning. Animal research has been very important for progress in sleep research and sleep medicine. It provides opportunities to investigate the sleeping brain in ways not possible in healthy volunteers. Progress in genomics has brought new insights in sleep regulation, the best example being the discovery of hypocretin/orexin deficiency as the cause of narcolepsy. Gene manipulation holds great promise for the future since it is possible not only to investigate the functions of different genes under normal conditions, but also to mimic human pathology in much greater detail
Constraining the S factor of 15N(p,g)16O at Astrophysical Energies
The 15N(p,g)16O reaction represents a break out reaction linking the first
and second cycle of the CNO cycles redistributing the carbon and nitrogen
abundances into the oxygen range. The reaction is dominated by two broad
resonances at Ep = 338 keV and 1028 keV and a Direct Capture contribution to
the ground state of 16O. Interference effects between these contributions in
both the low energy region (Ep < 338 keV) and in between the two resonances
(338 <Ep < 1028 keV) can dramatically effect the extrapolation to energies of
astrophysical interest. To facilitate a reliable extrapolation the 15N(p,g)16O
reaction has been remeasured covering the energy range from Ep=1800 keV down to
130 keV. The results have been analyzed in the framework of a multi-level
R-matrix theory and a S(0) value of 39.6 keV b has been found.Comment: 15 pages, 9 figure
- …