106 research outputs found

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste

    X-ray absorption spectroscopy systematics at the tungsten L-edge

    Get PDF
    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2–</sup> (mdt<sup>2–</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere

    The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication

    Get PDF
    The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism

    Evaluation of two sets of immunohistochemical and Western blot confirmatory methods in the detection of typical and atypical BSE cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three distinct forms of bovine spongiform encephalopathy (BSE), defined as classical (C-), low (L-) or high (H-) type, have been detected through ongoing active and passive surveillance systems for the disease.</p> <p>The aim of the present study was to compare the ability of two sets of immunohistochemical (IHC) and Western blot (WB) BSE confirmatory protocols to detect C- and atypical (L- and H-type) BSE forms.</p> <p>Obex samples from cases of United States and Italian C-type BSE, a U.S. H-type and an Italian L-type BSE case were tested in parallel using the two IHC sets and WB methods.</p> <p>Results</p> <p>The two IHC techniques proved equivalent in identifying and differentiating between C-type, L-type and H-type BSE. The IHC protocols appeared consistent in the identification of PrP<sup>Sc </sup>distribution and deposition patterns in relation to the BSE type examined. Both IHC methods evidenced three distinct PrP<sup>Sc </sup>phenotypes for each type of BSE: prevailing granular and linear tracts pattern in the C-type; intraglial and intraneuronal deposits in the H-type; plaques in the L-type.</p> <p>Also, the two techniques gave comparable results for PrP<sup>Sc </sup>staining intensity on the C- and L-type BSE samples, whereas a higher amount of intraglial and intraneuronal PrP<sup>Sc </sup>deposition on the H-type BSE case was revealed by the method based on a stronger demasking step.</p> <p>Both WB methods were consistent in identifying classical and atypical BSE forms and in differentiating the specific PrP<sup>Sc </sup>molecular weight and glycoform ratios of each form.</p> <p>Conclusions</p> <p>The study showed that the IHC and WB BSE confirmatory methods were equally able to recognize C-, L- and H-type BSE forms and to discriminate between their different immunohistochemical and molecular phenotypes. Of note is that for the first time one of the two sets of BSE confirmatory protocols proved effective in identifying the L-type BSE form. This finding helps to validate the suitability of the BSE confirmatory tests for BSE surveillance currently in place.</p

    Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Get PDF
    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging

    Phosphorus K beta X ray emission spectroscopy detects non covalent interactions of phosphate biomolecules in situ

    No full text
    Phosphorus is ubiquitous in biochemistry, being found in the phosphate groups of nucleic acids and the energy transferring system of adenine nucleotides e.g. ATP . K amp; 946; X ray emission spectroscopy XES of phosphorus has been largely unexplored, with no previous applications to biomolecules. Here, the potential of P K amp; 946; XES to study phosphate containing biomolecules, including ATP and NADPH, is evaluated, as is the application of the technique to aqueous solution samples. P K amp; 946; spectra offer a detailed picture of phosphate valence electronic structure, reporting on subtle non covalent effects, such as hydrogen bonding and ionic interactions, that are key to enzymatic catalysis. Spectral features are interpreted using density functional theory DFT calculations, and potential applications to the study of biological energy conversion are highlighte

    Calcium Valence-to-Core X-ray Emission Spectroscopy: A Sensitive Probe of Oxo Protonation in Structural Models of the Oxygen-Evolving Complex

    No full text
    Calcium is an abundant, nontoxic metal that finds many roles in synthetic and biological systems including the oxygen-evolving complex (OEC) of photosystem II. Characterization methods for calcium centers, however, are underdeveloped compared to those available for transition metals. Valence-to-core X-ray emission spectroscopy (VtC XES) selectively probes the electronic structure of an element’s chemical environment, providing insight that complements the geometric information available from other techniques. Here, the utility of calcium VtC XES is established using an in-house dispersive spectrometer in combination with density functional theory. Spectral trends are rationalized within a molecular orbital framework, and Kβ2,5 transitions, derived from molecular orbitals with primarily ligand p character, are found to be a promising probe of the calcium coordination environment. In particular, it is shown that calcium VtC XES is sensitive to the electronic structure changes that accompany oxo protonation in Mn3CaO4-based molecular mimics of the OEC. Through correlation to calculations, the potential of calcium VtC XES to address unresolved questions regarding the mechanism of biological water oxidation is highlighted
    corecore