17,048 research outputs found

    Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    Full text link
    We study the P−VP-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d≥6d\geq6-dimensional spacetime when the coupling coefficients cim2c_i m^2 of massive potential satisfy some certain conditions.Comment: 14 pages, several references are added, v2: published in EPJ

    Control of one-dimensional guided formations using coarse information

    Full text link
    Motivated by applications in intelligent highway systems, the paper studies the problem of guiding mobile agents in a one-dimensional formation to their desired relative positions. Only coarse information is used which is communicated from a guidance system that monitors in real time the agents' motions. The desired relative positions are defined by the given distance constraints between the agents under which the overall formation is rigid in shape and thus admits locally a unique realization. It is shown that even when the guidance system can only transmit at most four bits of information to each agent, it is still possible to design control laws to guide the agents to their desired positions. We further delineate the thin set of initial conditions for which the proposed control law may fail using the example of a three-agent formation. Tools from non-smooth analysis are utilized for the convergence analysis.Comment: 13 pages, 4 figure

    Reentrant phase transitions and triple points of topological AdS black holes in Born-Infeld-massive gravity

    Get PDF
    Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze and Tolley(dRGT) massive gravity, we study the critical behaviors of four-dimensional topological Anti-de Sitter(AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics by treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. It shows that besides the Van der Waals-like SBH/LBH phase transitions appears, the so-called reentrant phase transitions (RPTs) are also observed when the coupling coefficients cim2c_i m^2 of massive potential and Born-Infeld parameter bb satisfy some certain conditions.Comment: arXiv admin note: text overlap with arXiv:1612.08056; text overlap with arXiv:1402.2837, arXiv:1306.5756 by other autho

    Taming mismatches in inter-agent distances for the formation-motion control of second-order agents

    Get PDF
    This paper presents the analysis on the influence of distance mismatches on the standard gradient-based rigid formation control for second-order agents. It is shown that, similar to the first-order case as recently discussed in the literature, these mismatches introduce two undesired group behaviors: a distorted final shape and a steady-state motion of the group formation. We show that such undesired behaviors can be eliminated by combining the standard formation control law with distributed estimators. Finally, we show how the mismatches can be effectively employed as design parameters in order to control a combined translational and rotational motion of the formation.Comment: 14 pages, conditionally accepted in Automatic Control, IEEE Transactions o

    Controlling rigid formations of mobile agents under inconsistent measurements

    Get PDF
    Despite the great success of using gradient-based controllers to stabilize rigid formations of autonomous agents in the past years, surprising yet intriguing undesirable collective motions have been reported recently when inconsistent measurements are used in the agents' local controllers. To make the existing gradient control robust against such measurement inconsistency, we exploit local estimators following the well known internal model principle for robust output regulation control. The new estimator-based gradient control is still distributed in nature and can be constructed systematically even when the number of agents in a rigid formation grows. We prove rigorously that the proposed control is able to guarantee exponential convergence and then demonstrate through robotic experiments and computer simulations that the reported inconsistency-induced orbits of collective movements are effectively eliminated.Comment: 10 page

    Distributed scaling control of rigid formations

    Get PDF
    Recently it has been reported that biased range-measurements among neighboring agents in the gradient distance-based formation control can lead to predictable collective motion. In this paper we take advantage of this effect and by introducing distributed parameters to the prescribed inter-distances we are able to manipulate the steady-state motion of the formation. This manipulation is in the form of inducing simultaneously the combination of constant translational and angular velocities and a controlled scaling of the rigid formation. While the computation of the distributed parameters for the translational and angular velocities is based on the well-known graph rigidity theory, the parameters responsible for the scaling are based on some recent findings in bearing rigidity theory. We carry out the stability analysis of the modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year 201
    • …
    corecore