Recently it has been reported that biased range-measurements among
neighboring agents in the gradient distance-based formation control can lead to
predictable collective motion. In this paper we take advantage of this effect
and by introducing distributed parameters to the prescribed inter-distances we
are able to manipulate the steady-state motion of the formation. This
manipulation is in the form of inducing simultaneously the combination of
constant translational and angular velocities and a controlled scaling of the
rigid formation. While the computation of the distributed parameters for the
translational and angular velocities is based on the well-known graph rigidity
theory, the parameters responsible for the scaling are based on some recent
findings in bearing rigidity theory. We carry out the stability analysis of the
modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year
201