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Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze, and Tolley (dRGT) massive gravity, we
study the critical behaviors of topological Anti-de Sitter (AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics.
Here the cosmological constant appears as a dynamical pressure of the system and its corresponding conjugate quantity is
interpreted as thermodynamic volume. This shows that, besides the Van der Waals-like SBH/LBH phase transitions, the so-
called reentrant phase transition (RPT) appears in four-dimensional space-time when the coupling coefficients 𝑐𝑖𝑚2 of massive
potential and Born-Infeld parameter 𝑏 satisfy some certain conditions. In addition, we also find the triple critical points and the
small/intermediate/large black hole phase transitions for 𝑑 = 5.

1. Introduction

Einstein’s General Relativity (GR), which describes that the
graviton is amassless spin-2 particle, helped us to understand
the dynamics of the Universe [1–3]. However, there are some
fundamental issues, such as the hierarchy problem in particle
physics, the old cosmological constant problem, and the ori-
gin of late-time acceleration of the Universe, that still exist in
GR [4].One of the alternating theories of gravity is known as a
massive gravity, wheremass terms are added to theGR action.
A graviton mass has the advantage to potentially provide a
theory of dark energy which could explain the present day
acceleration of our Universe [5]. On the other hand, since the
quantum theory of massless gravitons is nonrenormalizable,
a natural question is whether one can build a self-consistent
gravity theory if the graviton is massive. The first attempt
toward constructing the theory of massive gravity was done
by Fierz and Pauli (FP) [6]. With the quadratic order, the FP
mass term is the only ghost-free term describing a gravity
theory with five degrees of freedom [7]. However, due to
the existence of the van Dam-Veltman-Zakharov (vDVZ)

discontinuity, this theory cannot recover linearized Einstein
gravity in the limit of vanishing graviton mass [8, 9].

In particular, Vainshtein [10] proposed that the linear
massive gravity can be recovered to GR through the “Vain-
shtein Mechanism” at small scales by including nonlinear
terms in the massive gravity action. Nevertheless, it usually
brings various instabilities for the gravitational theories on
the nonlinear level by adding generic mass terms, since this
model suffers from a pathology called a “Boulware-Deser”
(BD) ghost. Later, a newnonlinearmassive gravity theorywas
proposed by de Rham, Gabadadze, and Tolley (dRGT) [11–
13], where the BD ghost [14] was eliminated by introducing
higher order interaction terms in the action. Then, Vegh et
al. [15, 16] constructed a nontrivial black hole solution with a
Ricci flat horizon in four-dimensional dRGTmassive gravity.
The spherically symmetric solutions were also addressed in
[17–19]; the corresponding charged black hole solution was
found in [20, 21].

Recent development on the thermodynamics of black
holes in extended phase space shows that the cosmological
constant can be interpreted as the thermodynamic pressure
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and treated as a thermodynamic variable in its own right
[22, 23]:

𝑃 = − Λ8𝜋 (1)

in the geometric units 𝐺𝑁 = ℏ = 𝑐 = 1. Such operation
assumes that gravitational theories including different values
of the cosmological constants fall in the same class, with
unified thermodynamic relations. For black hole thermody-
namics, the variation of the cosmological constant ensures
the consistency between the first law of black hole thermo-
dynamics and the Smarr formula. Moreover, the classical
theory of gravity may be an effective theory which follows
from a yet unknown fundamental theory, in which all the
presently “physical constants” are actuallymoduli parameters
that can run from place to place in the moduli space of
the fundamental theory. Since the fundamental theory is yet
unknown, it is more reasonable to consider the extended
thermodynamics of gravitational theories involving only a
single action, and then all variables will appear in the
thermodynamical relations. In the extended phase space, the
charged AdS black hole black hole admits a more direct
and precise coincidence between the first-order small/large
black holes (SBH/LBH) phase transition and the Van der
Waals liquid-gas phase transition, and both systems share
the same critical exponents near the critical point [24]. More
discussions in various gravity theories can be found in [25–
46]. Recently, some investigations for thermodynamics of
AdS black holes have been also generalized to the extended
phase space in the dRGT massive gravity [47–50], which
show the Van der Waals-like SBH/LBH phase transition in
the charged topological AdS black holes. In addition, the
deep relation between the dynamical perturbation and the
Van der Waals-like SBH/LBH phase transition in the four-
dimensional dRGT massive gravity has been also recovered
in [51]. In particular, for neutral AdS black holes in all𝑑 ≥ 6 dimensional space-time, there exist peculiar behav-
iors of intermediate/small/large black hole phase transitions
reminiscent of reentrant phase transitions (RPTs) when the
coupling coefficients 𝑐𝑖𝑚2 of massive potential satisfy some
certain conditions [52]. A system undergoes an RPT if a
monotonic variation of any thermodynamic quantity results
in two (or more) phase transitions such that the final state is
macroscopically similar to the initial state.The RPT is usually
observed in multicomponent fluid systems, ferroelectrics,
gels, liquid crystals, and binary gases [53].

In Maxwell’s electromagnetic field theory, a point-like
charge which allowed a singularity at the charge position
usually brings about infinite self-energy. In order to overcome
this problem, Born and Infeld [54] and Hoffmann [55]
introduced Born-Infeld electromagnetic field to solve infinite
self-energy problem by imposing a maximum strength of the
electromagnetic field. In addition, BI type effective action
arises in an open superstring theory and D-branes are free of
physical singularities. In recent two decades, exact solutions
of gravitating black objects in the presence of BI theory
have been vastly investigated. In the extended phase space,
[56, 57] recovered the RPT in the four-dimensional Einstein-
Born-Infeld AdS black hole with spherical horizon. However,

for the higher-dimensional Einstein-Born-Infeld AdS black
holes, there is no RPT. What about AdS black holes in the
Born-Infeld-massive gravity? In this paper, we will generalize
the discussion to topological AdS black holes for 𝑑 = 4 and 5
in the Born-Infeld-massive gravity.

This paper is organized as follows. In Section 2, we review
the thermodynamics of Born-Infeld-massive black holes in
the extended phase space. In Section 3, we study the critical
behaviors of four- and five-dimensional topological AdS
black holes in context of 𝑃−𝑉 criticality and phase diagrams.
We end the paper with conclusions and discussions in
Section 4.

2. Thermodynamics of 𝑑-Dimensional
Born-Infeld AdS Black Holes

We start with the action of 𝑑-dimensional massive gravity in
presence of Born-Infeld field [58]:

I = 116𝜋 ∫𝑑𝑑𝑥√−𝑔[𝑅 − 2Λ +L (F)
+ 𝑚2 4∑
𝑖=1

𝑐𝑖U𝑖 (𝑔, 𝑓)] ,
(2)

where the last four terms are the massive potential associated
with gravitonmass, 𝑐𝑖 are the negative constants [21], and𝑓 is
a fixed rank-2 symmetric tensor. Moreover,U𝑖 are symmetric
polynomials of the eigenvalues of the 𝑑 × 𝑑 matrix K𝜇] ≡√𝑔𝜇𝛼𝑓𝛼]:

U1 = [K] ,
U2 = [K]2 − [K2] ,
U3 = [K]3 − 3 [K] [K2] + 2 [K3] ,
U4 = [K]4 − 6 [K2] [K]2 + 8 [K3] [K] + 3 [K2]2

− 6 [K4] .

(3)

The square root inK is understood as thematrix square root,
that is, (√𝐴)𝜇](√𝐴)𝜆] = 𝐴𝜇𝜆, and the rectangular brackets
denote traces [K] = K𝜇𝜇. In addition, 𝑏 is the Born-Infeld
parameter andL(F) with

L (F) = 4𝑏2(1 − √1 + 𝐹𝜇]𝐹𝜇]2𝑏2 ) . (4)

In the limit 𝑏 → ∞, it reduces to the standard Maxwell field
L(F) = −𝐹𝜇]𝐹𝜇] +O(𝐹4). If taking 𝑏 = 0,L(F) disappears.

Consider the metric of 𝑑-dimensional space-time in the
following form:

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 1𝑓 (𝑟)𝑑𝑟2 + 𝑟2ℎ𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗, (5)

where ℎ𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 is the line element for an Einstein space
with constant curvature (𝑑 − 2)(𝑑 − 3)𝑘. The constant 𝑘
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characterizes the geometric property of hypersurface, which
takes values 𝑘 = 0 for flat, 𝑘 = −1 for negative curvature, and𝑘 = 1 for positive curvature, respectively.

By using the reference metric [21]

𝑓𝜇] = diag (0, 0, 𝑐20ℎ𝑖𝑗) (6)

with a positive constant 𝑐0, we can obtain

U1 = (𝑑 − 2) 𝑐0𝑟 ,
U2 = (𝑑 − 2) (𝑑 − 3) 𝑐20𝑟2 ,
U3 = (𝑑 − 2) (𝑑 − 3) (𝑑 − 4) 𝑐30𝑟3 ,
U4 = (𝑑 − 2) (𝑑 − 3) (𝑑 − 4) (𝑑 − 5) 𝑐40𝑟4 .

(7)

Obviously, the terms related to 𝑐3 and 𝑐4 only appear in the
black hole solutions for 𝑑 ≥ 5 and 𝑑 ≥ 6, respectively [21].

In addition, the electromagnetic field tensor in 𝑑-
dimensions is given by 𝐹tr = √𝑑2𝑑3/(1 + Γ)(𝑞/𝑟𝑑2), and the
metric function 𝑓(𝑟) is obtained as follows [58]:

𝑓 (𝑟) = 𝑘 − 𝑚0𝑟𝑑3 + (4𝑏
2 − 2Λ)𝑑1𝑑2 𝑟2 − 4𝑏2𝑟2𝑑1𝑑2 √1 + Γ

+ 4𝑑2𝑞2𝑑1𝑟2𝑑3H
+ 𝑚2𝑐0 (𝑐1𝑟𝑑2 + 𝑐0𝑐2 + 𝑑3𝑐

2
0 𝑐3𝑟 + 𝑑3𝑑4𝑐30 𝑐4𝑟2 ) ,

(8)

where 𝑑𝑖 = 𝑑 − 𝑖 and
Γ = 𝑑2𝑑3𝑞2𝑏2𝑟2𝑑2 ,
H=2𝐹1 [12 , 𝑑32𝑑2 ,

3𝑑7/32𝑑2 , −Γ] .
(9)

Moreover, 𝑚0 and 𝑞 are related to the mass𝑀 and charge 𝑄
of black holes as

𝑄 = √𝑑2𝑑3Σ𝑘4𝜋 𝑞,
𝑀 = 𝑑2Σ𝑘16𝜋 𝑚0,

(10)

where Σ𝑘 represents the volume of constant curvature hyper-
surface described by ℎ𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗.The electromagnetic potential
difference (Φ) between the horizon and infinity reads asΦ =√𝑑2/𝑑3(𝑞/𝑟𝑑3+ )H+.

Then the mass𝑀 of the Born-Infeld AdS black hole for
massive gravity is given by

𝑀 = 𝑑2Σ𝑘𝑟𝑑3+16𝜋 [𝑘 + 16𝜋𝑃𝑑1𝑑2 𝑟2+ + 4𝑏
2𝑟2+𝑑1𝑑2 (1 − √1 + Γ+)

+ 4𝑑2𝑞2𝑑1𝑟2𝑑3+ H+

+ 𝑚2 (𝑐0𝑐1𝑟+𝑑2 + 𝑐20 𝑐2 + 𝑑3𝑐30 𝑐3𝑟+ + 𝑑3𝑑4𝑐40 𝑐4𝑟2+ )] ,
(11)

in terms of the horizon radius 𝑟+. Due to existence of the
pressure in obtained relation for total mass of the black holes,
here the black hole mass𝑀 can be considered as the enthalpy𝐻 rather than the internal energy of the gravitational system
[59].

In addition, the Hawking temperature which is related to
the definition of surface gravity on the outer horizon 𝑟+ can
be obtained as

𝑇
= 𝑑3𝑘4𝜋𝑟+ + 4𝑟+𝑑2 𝑃 + 𝑏

2𝑟+𝑑2𝜋 (1 − √1 + Γ+)
+ 𝑚2𝑐04𝜋 (𝑐1 + 𝑑3𝑐0𝑐2𝑟+ + 𝑑3𝑑4𝑐20 𝑐3𝑟2+ + 𝑑3𝑑4𝑑5𝑐30 𝑐4𝑟3+ ) ,

(12)

and the entropy 𝑆 of the Born-Infeld AdS black hole reads as

𝑆 = Σ𝑘4 𝑟𝑑2+ . (13)

It is easy to check that those thermodynamic quantities obey
the (extended phase space) first law of black hole thermody-
namics:

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 +B𝑑𝑏 + 𝑐0𝑚2Σ𝑘𝑟𝑑2+16𝜋 𝑑𝑐1
+ 𝑑2𝑐20𝑚2Σ𝑘𝑟𝑑3+16𝜋 𝑑𝑐2 + 𝑑2𝑑3𝑐30𝑚2Σ𝑘𝑟𝑑4+16𝜋 𝑑𝑐3
+ 𝑑2𝑑3𝑑4𝑐40𝑚2Σ𝑘𝑟𝑑5+16𝜋 𝑑𝑐4,

(14)

where B, which is a quantity conjugate to 𝑏, is called the
“Born-Infeld vacuum polarization”:

B = (𝜕𝐻𝜕𝑏 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑆,𝑃,𝑐1 ,𝑐2 ,𝑐3 ,𝑐4)

= Σ𝑘𝑏𝑟𝑑1+2𝑑1𝜋 (1 − √1 + Γ+) + 𝑑2𝑑3Σ𝑘4𝜋𝑑1𝑏 H+𝑞2𝑟𝑑3+ , (15)

and the thermodynamic volume 𝑉 [60], which is the corre-
sponding conjugate quantity of 𝑃, can be written as

𝑉 = Σ𝑘𝑟𝑑11𝑑1 . (16)
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The behavior of free energy 𝐺 is important to determine
the thermodynamic phase transition in the canonical ensem-
ble. We can calculate the free energy from the thermody-
namic relation:𝐺 = 𝐻 − 𝑇𝑆

= 𝑟𝑑1+𝑑1𝑑2 (𝑃 + 𝑏
2

4𝜋√1 + Γ+) + 𝑑
2
2𝑞2H+2𝜋𝑑1𝑟𝑑3+ +

𝑟𝑑3+16𝜋
+ 𝑚2𝑐20 𝑟𝑑5+16𝜋 (𝑐2𝑟2+ + 2𝑑3𝑐0𝑐3𝑟+ + 3𝑑3𝑑4𝑐20 𝑐4) .

(17)

3. Phase Transitions of Topological AdS Black
Holes in Born-Infeld-Massive Gravity

For further convenience, we denote

𝑇̂ = 𝑇 − 𝑐0𝑐1𝑚24𝜋 ,
𝑊2 = −𝑘 + 𝑐20 𝑐2𝑚28𝜋 ,
𝑊3 = −𝑐30 𝑐3𝑚28𝜋 ,
𝑊4 = −𝑐40 𝑐4𝑚28𝜋 ,

(18)

where 𝑇̂ denotes the shifted temperature and can be negative
according to the value of 𝑐0𝑐1𝑚2. Then, the equation of state
of the black hole can be obtained from (12):

𝑃 = 𝑑24𝑟+ [𝑇̂ + 2𝑑3𝑊2𝑟+ + 2𝑑3𝑑4𝑊3𝑟2+ + 2𝑑3𝑑4𝑑5𝑊4𝑟3+
− 𝑏2𝑟+𝑑2𝜋 (1 − √1 + Γ+)] .

(19)

To comparewith theVdWfluid equation, we can translate the
“geometric” equation of state to physical one by identifying
the specific volume V of the fluid with the horizon radius of
the black hole as V = 4𝑟+/𝑑2. Evidently, the specific volume V
is proportional to the horizon radius 𝑟+; therefore we will just
use the horizon radius in the equation of state for the black
hole hereafter in this paper.

We know that the critical point occurs when 𝑃 has an
inflection point:

𝜕𝑃𝜕𝑟+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇̂=𝑇̂𝑐 ,𝑟+=𝑟𝑐 =

𝜕2𝑃𝜕𝑟2+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇̂=𝑇̂𝑐 ,𝑟+=𝑟𝑐 = 0, (20)

where the subscript stands for the quantities at the critical
point. The critical shifted temperature is obtained as

𝑇̂𝑐 = −2𝑑3𝑟𝑐 (2𝑤2 + 3𝑑4𝑊3𝑟𝑐 + 4𝑑4𝑑5𝑊4𝑟2𝑐 )
− 𝑑2𝑑3𝑞2𝜋𝑟2𝑑5/2𝑐 (1 + Γ+)−1/2 ,

(21)

and the equation for critical horizon radius 𝑟𝑐 is given by

𝐹 (𝑟𝑐) = 6𝑑4𝑑5𝑊4 + 3𝑑4𝑊3𝑟𝑐 +𝑊2𝑟2𝑐
+ 𝑑5/2𝑑2𝑞22𝜋𝑟2𝑑4𝑐 (1 + Γ+)−1/2
− 𝑑3𝑑32𝑞44𝜋𝑏2𝑟4𝑑3𝑐 (1 + Γ+)−3/2 = 0.

(22)

For later discussions, it is convenient to rescale some
quantities in the following way:

𝑊2 = 𝑞2/(𝑑−2) ⋅ 𝑏2(𝑑−3)/(𝑑−2)𝑤2,
𝑊3 = 𝑞3/(𝑑−2) ⋅ 𝑏(2𝑑−7)/(𝑑−2)𝑤3,
𝑊4 = 𝑞4/(𝑑−2) ⋅ 𝑏2(𝑑−4)/(𝑑−2)𝑤4,
𝑟+ = (𝑞𝑏)

1/(𝑑−2) ⋅ 𝑥,
𝑃 = 𝑏2 ⋅ 𝑝,
𝑇̂ = 𝑞1/(𝑑−2) ⋅ 𝑏(2𝑑−5)/(𝑑−2) ⋅ 𝑡,
𝐺 = 𝑞(𝑑−1)/(𝑑−2) ⋅ 𝑏−2/(𝑑−2)Σ𝑘 ⋅ 𝑔.

(23)

In terms of quantities above, (19), (21), and (22) can bewritten
as

𝑝 = 𝑑24𝑥 [[𝑡 +
2𝑑3𝑤2𝑥 + 2𝑑3𝑑4𝑤3𝑥2 + 2𝑑3𝑑4𝑑5𝑤4𝑥3

− 𝑥𝑑2𝜋 (1 − √1 + 𝑑2𝑑3𝑥2𝑑2 )]] ,
(24)

𝑡𝑐 = −2𝑑3𝑥𝑐 (2𝑤2 + 3𝑑4𝑤3𝑥𝑐 + 4𝑑4𝑑5𝑤4𝑥2𝑐 ) − 𝑑2𝑑3𝜋𝑥2𝑑5/2𝑐 (1
+ 𝑑2𝑑3𝑥2𝑑2𝑐 )

−1/2 ,
(25)

𝐹 (𝑥𝑐) = 6𝑑4𝑑5𝑤4 + 3𝑑4𝑤3𝑥𝑐 + 𝑤2𝑥2𝑐 + 𝑑2𝑑5/22𝜋𝑥2𝑑4𝑐 (1
+ 𝑑2𝑑3𝑥2𝑑2𝑐 )

−1/2 − 𝑑3𝑑324𝜋𝑥4𝑑3𝑐 (1 + 𝑑2𝑑3𝑥2𝑑2𝑐 )
−3/2 = 0,

(26)

where 𝑥𝑐 denotes the critical value of 𝑥. For arbitrary
parameter 𝑑, it is hard to obtain the exact solution of (26).

In what follows we shall specialize to 𝑑 = 4 and 5 and
then perform a detailed study of the thermodynamics of these
black holes.
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Figure 1: Born-Infeld AdS black holes for 𝑑 = 4 and 𝑤2 = −0.1. There is one critical point, which corresponds to VdW-like SBH/LBH phase
transition when 𝑡 < 𝑡𝑐. Here the critical pressure and temperature read 𝑝 = 𝑝𝑐 ≈ 0.011986 and 𝑡 = 𝑡𝑐 ≈ 0.125087, respectively.
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Figure 2: Born-Infeld AdS black holes for 𝑑 = 4 and 𝑤2 = −0.124. (a) The 𝑝 − 𝑥 diagram shows the existence of two critical points, one
at positive pressure 𝑝𝑐1 ≈ 0.0177545, the other at negative pressure 𝑝𝑐2 ≈ −0.0084877. (b) The Gibbs free energy shows one physical (with
positive pressure) critical point and the corresponding first-order SBH/LBH phase transition, occurring for 𝑡 ∈ (𝑡𝜏, 𝑡𝑐1) and 𝑝 ∈ (𝑝𝜏, 𝑝𝑐1).
(c) There is a reentrant phase transition (RPT) corresponding to the zeroth-order phase transition at 𝑡 = 𝑡0 followed by a first-order VdW-like
SBH/LBH phase transition at the intersection 𝑡 = 𝑡1 with the swallowtail structure.

3.1. 𝑃 − 𝑉 Criticality for 𝑑 = 4. For 𝑑 = 4, (26) will reduce to
the cubic equation:

𝐹 (𝑦) = 𝑦3 − 3𝑦4 − 𝜋𝑤22 = 0 (27)

with 𝑦 = (𝑥4𝑐 + 2)−1/2.
Depending on different values of 𝑤2, (27) admits one or

more positive real roots for 𝑥, which can be also reflected by

𝜕𝐹 (𝑦)𝜕𝑦 = 3𝑦2 − 34 . (28)

When |𝑤2| ≤ 1/2𝜋, three real roots occur, which are given
by

𝑦𝑖 = cos(13 arccos (2𝜋𝑤2) − 2𝜋𝑖3 ) , 𝑖 = 0, 1, 2. (29)

Moreover, in order that 𝑥𝑐 = (1/𝑦2 − 2)1/4 be positive, we
require an additional constraint |𝑦| ≤ 1/√2. Then, we have𝑦0 > 0 in case of −1/2𝜋 ≤ 𝑤2 ≤ −1/√8𝜋, and 𝑦1 > 0 in the
region of −1/2𝜋 ≤ 𝑤2 ≤ 0, while the solution 𝑦2 is always
negative.

Now by inserting solutions of 𝑦0 and 𝑦1 into (24) and
(25), we analyze the critical behaviors. Notice that analytic
methods cannot be applied in our analysis because of the
complexity of the Gibbs free energy and equation of state, we
resort to graphical and numerical methods.

(1) 𝑤2 ∈ (−1/√8𝜋, 0). As shown in Figure 1, the 𝑝 − 𝑥
diagram displays that the dashed curve represents
critical isotherm at 𝑡 = 𝑡𝑐 and the dotted and solid
curves correspond to 𝑡 > 𝑡𝑐 and 𝑡 < 𝑡𝑐, respectively.
In the 𝑔 − 𝑡 diagram, the solid curve represents 𝑝 <𝑝𝑐, the dotted curve correspond to 𝑝 > 𝑝𝑐, and the
dashed curve is for 𝑝 = 𝑝𝑐. We observe standard
swallowtail behavior. Moreover, the 𝑝 − 𝑡 diagram
shows the coexistence line of the first-order phase
transition terminating at a critical point. These plots
are analogous to typical behavior of the liquid-gas
phase transition of the Van der Waals fluid.

(2) 𝑤2 ∈ (−0.132795, −1/√8𝜋), there only exist one phys-
ical (with positive pressure) critical point and the
corresponding VdW-like SBH/LBH phase transition,
which occurs for the pressures 𝑝 ∈ (𝑝𝜏, 𝑝𝑐1) and
temperatures 𝑡 ∈ (𝑡𝜏, 𝑡𝑐1); see Figure 2. For the 𝑝 − 𝑡
diagram in Figure 3, three separate phases of black
holes emerge in the region of 𝑝𝜏 < 𝑝 ≤ 𝑝𝑧 < 𝑝𝑐1:
intermediate black holes (IBH) (on the left), small (on
the middle), and large (on the right), where small
and large black holes are separated by the SBH/LBH
phase transition, but the intermediate and small are
separated by a finite jump in 𝑔, which is so-called
zeroth-order phase transition [61].
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Figure 3: The coexistence line of the VdW-like SBH/LBH phase transition is depicted by a thick solid line. It initiates from the critical point(𝑝𝑐1, 𝑡𝑐1) and terminates at (𝑝𝜏, 𝑡𝜏). The solid line describes the “coexistence line” of small and intermediate black holes, separated by a finite
gap in 𝑔, indicating the zeroth-order phase transition. It commences from (𝑡𝑧, 𝑝𝑧) and terminates at (𝑝𝜏, 𝑡𝜏).
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Figure 4: Born-Infeld AdS black holes for 𝑑 = 4 and 𝑤2 = −0.14. There are two critical points at positive pressure.

For 𝑝 < 𝑝𝜏 only one phase of large black holes exists.
When taking 𝑤2 = −0.124, we obtain

(𝑡𝜏, 𝑡𝑧, 𝑡𝑐1) ≈ (0.12316, 0.123825, 0.175593) ,
(𝑝𝜏, 𝑝𝑧, 𝑝𝑐1) ≈ (0.0072472, 0.008104, 0.0177545) . (30)

(3) 𝑤2 ∈ (−1/2𝜋, −0.132795), there exist two critical
points with positive pressure, and the similar RPT
also occurs. As shown in Figure 4, we obtain

(𝑡𝑐2, 𝑡𝜏, 𝑡𝑧, 𝑡𝑐1)
≈ (0.187113, 0.197121, 0.198064, 0.2139999) ,

(𝑝𝑐2, 𝑝𝜏, 𝑝𝑧, 𝑝𝑐1)
≈ (0.0116313, 0.018695, 0.0194174, 0.0235228) ,

(31)

when taking 𝑤2 = −0.14.
With regard to |𝑤2| > 1/2𝜋, the solution of (27) is given

by

𝑦3 = − cosh (13 arccos (−2𝜋𝑤2)) , (32)

which violates the constraint condition |𝑦| ≤ 1/√2.

All in all, when the parameter 𝑤2 satisfies −1/2𝜋 < 𝑤2 <0, the Van derWaals-like SBH/LBH phase transition appears.
In addition, the interesting RPT happens in case of −1/2𝜋 <𝑤2 < −1/√8𝜋.
3.2. 𝑃 −𝑉 Criticality for 𝑑 = 5. Then (26) can be rewritten as

𝐹 (𝑥𝑐) = 1𝑥𝑐 (𝑥6𝑐 + 6)−3/2 − 518𝑥𝑐 (𝑥6𝑐 + 6)−1/2
− 2𝜋27 (𝑤2 + 3𝑤3𝑥𝑐 ) = 0.

(33)

Evidently, it is not possible to obtain analytic solution of above
equation. To see more closely the phase transition of the
Born-Infeld AdS black hole, here we analyze the asymptotic
property of the function 𝐹(𝑥𝑐). In addition, the function𝑑𝐹(𝑥𝑐)/𝑑𝑥𝑐 reads

𝑑𝐹 (𝑥𝑐)𝑑𝑥𝑐 = 72(1 − 5𝑥6𝑐24 )
2 + 135𝑥12𝑐8

+ 4𝜋𝑤3 (𝑥6𝑐 + 6)5/2 .
(34)

Evidently, (33) has more than one real roots. For different
values of 𝑤2 and 𝑤3, we will investigate the phase structure
and criticality in the extended phase space.
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Figure 5: Born-Infeld AdS black holes for 𝑑 = 5, 𝑤2 = −0.25, and 𝑤3 = 0.1. (a) The 𝑝 − 𝑥 diagram. The dashed curve represents critical
isotherm at 𝑡 = 𝑡𝑐. The dotted and solid curves correspond to 𝑡 > 𝑡𝑐 and 𝑡 < 𝑡𝑐, respectively. (b) The 𝑔 − 𝑡 diagram.The solid curve represents𝑝 < 𝑝𝑐, the dotted curve correspond to 𝑝 > 𝑝𝑐, and the dashed curve is for 𝑝 = 𝑝𝑐. We observe standard swallowtail behavior. (c) The𝑝 − 𝑡 diagram, showing the coexistence line of SBH/LBH phase transition terminating at a critical point. These plots are analogous to typical
behavior of the liquid-gas phase transition of the VdW fluid.
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Figure 6: Born-Infeld AdS black holes for 𝑑 = 5, 𝑤2 = 0.001, and 𝑤3 = −0.02.
3.2.1. 𝑤2 > 0 and 𝑤3 > 0. When 𝑥𝑐 → +∞, 𝐹(𝑥𝑐) equals−2𝜋𝑤2/27. Near the origin 𝑥 = 0, we have

𝐹 (𝑥𝑐) = −(√6 + 12𝜋𝑤3)54𝑥𝑐 ; (35)

namely, 𝐹(𝑥𝑐) approaches −∞ on account of 𝑤3 > −1/2√6𝜋.
Moreover, function 𝑑𝐹(𝑥𝑐)/𝑑𝑥𝑐 is always positive, so there is
no real solution for 𝑥+. Therefore, there is no critical point.

3.2.2. 𝑤2 < 0 and 𝑤3 > 0. Here we adopt similar discussions
above. The function 𝐹(𝑥𝑐) = −2𝜋𝑤2/27 > 0 in case of𝑤2 < 0. However,𝐹(𝑥𝑐) approaches−∞near the origin𝑥 = 0.
Evidently, there is only one positive root of (33) on account of𝑑𝐹(𝑥𝑐)/𝑑𝑥𝑐 > 0. Then, a critical point occurs. In Figure 5, we
display VdW-like small/large black hole phase transition in
the system.

3.2.3. 𝑤2 > 0 and 𝑤3 < 0. In this case, it is hard work to
discuss the asymptotic property of (33). Here we resort to
graphical and numerical methods and also find the existence
of VdW-like small/large black hole phase transition in the
system; see Figure 6.

3.2.4. 𝑤2 < 0 and 𝑤3 < 0. In [58], Hendi et al. pointed out
that the VdW-like SBH/LBH phase transition occurs when𝑤2 < 0 and 𝑤3 < 0. Actually, there are some other interesting
phase transitions.
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Figure 7: Behavior of 𝑝 as a function of 𝑥 for 𝑡 =0.495, 0.497, 0.4988, and 0.5 from bottom to top. For small
pressure, one can see that there are stable SBH and LBH branches,
which implies the occurrence of VdW-like phase transition. With
the increasing of the temperature, there appears a new stable IBH
branch. Further increasing the pressure, this branch disappears.

For the case of 𝑤2 = −0.084825 and 𝑤3 = −0.045, the
pressure 𝑝 has three critical points, that is, (𝑝𝑐1, 𝑝𝑐2,𝑝𝑐3) = (0.113983, 0.115076, 0.116354) and (𝑡𝑐1, 𝑡𝑐2, 𝑡𝑐3) =(0.496659, 0.498326, 0.499503). We plot the pressure 𝑝 as a
function of 𝑥 for 𝑡 = 0.48, 0.497, 0.4988, and 0.51 (from
bottom to top) in Figure 7. When 𝑝 < 𝑝𝑐1, there exists a
characteristic swallowtail behavior in the 𝑔 − 𝑡 diagram, and
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Figure 8: Gibbs free energy of five-dimensional AdS black holes for 𝑤2 = −0.084825 and 𝑤3 = −0.045.

a VdW-like SBH/LBH phase transition will occur. Further
increasing 𝑝 such that 𝑝𝑐1 < 𝑝 < 𝑝𝑐2, there appears
a new stable IBH branch. For the corresponding Gibbs
free energy in Figure 8, three black hole phases (i.e., small,
large, and intermediate black holes) coexist together. There-
fore, we observe a triple point characterized by (𝑝𝜏, 𝑡𝜏) =(0.01960, 0.11226). Slightly above this pressure, a standard
SBH/IBH/LBH phase transition will appear in the system
with the increase of 𝑡. And such phase transition disappears
when 𝑝𝑐2 is approached.

Further increasing 𝑝, the stable IBH branch vanishes in
case of 𝑝𝑐2 < 𝑝 < 𝑝𝑐3. And only one stable branch survives
when 𝑝 > 𝑝𝑐3. In the ranges 𝑝 < 𝑝𝑐1 and 𝑝𝑐2 < 𝑝 < 𝑝𝑐3, one
characteristic swallowtail behavior is displayed in Figure 8.
When 𝑝 > 𝑝𝑐3, there is no such behavior.

4. Conclusions and Discussions

In the extended phase space, we have studied the phase
transition and critical behavior of topological AdS black
holes in the four- and five-dimensional Born-Infeld-massive
gravity. For 𝑑 = 4, we found that when the horizon topology
is spherical (𝑘 = 1), Ricci flat (𝑘 = 0), or hyperbolic(𝑘 = −1), there always exist the Van derWaals-like SBH/LBH
phase transitions when the coupling coefficients of massive
potential are located in the region −1/2𝜋 < 𝑤2 < 0. In
addition, a monotonic lowering of the temperature yields a
large-small-large black hole transition in the region −1/2𝜋 <𝑤2 < −1/√8𝜋, where we refer to the former large state as an
intermediate black hole (IBH), which is reminiscent of RPTs.
Moreover, this process is also accompanied by a discontinuity
in the global minimum of the Gibbs free energy, referred to
as a zeroth-order phase transition.

In some range of the parameters, there are three critical
points for five-dimensional Born-Infeld AdS black hole. In
such range, the Gibbs free energy displays the behavior of
two swallowtails.This phenomenon has been never recovered
before.

Recent observations of gravitational waves have put an
upper bound of 1.2 × 10−22 eV/𝑐2 on the graviton’s mass [62].
We can find in 4-dimensional case; the interesting RPTs can
always appear as long as the parameters 𝑞 and 𝑏 take the
suitable values with the constant 𝑘 taking the values ±1.
When the constant 𝑘 = 0, the role of the graviton’s mass is
highlighted, the parameters 𝑞 and 𝑏 cannot take an acceptable
range (means in the framework of the Born-Infeld theory) to
make the parameter 𝑤2 ∈ (−1/2𝜋, −1/√8𝜋), which means
only the VdW-like phase transitions might happen. In the 5-
dimensional case, when the constant 𝑘 = 1, this interesting
phenomenon could appear as long as the parameters 𝑞 and𝑏 take the suitable values. There are no three critical points
when the constant 𝑘 takes −1 or 0, because the parameter 𝑤2
is always positive.

Reference [57] shows that the RPTs only exist in the 4-
dimensional Born-Infeld AdS black hole with a spherical
horizon and also gives the proof that there is no reentrant
phase transition in the system of higher (≥5) dimensional
Born-Infeld AdS black hole. Reference [48] demonstrated
that there only exists the Van der Waals-like phase transition
in the 4-dimensional AdS black hole in massive gravity with
Maxwell’s electromagnetic field theory.Our results reveal that
the nonlinear electromagnetic field plays an important role
in the phase transition of the 4-dimensional AdS black hole,
and the massive gravity could bring richer phase structures
and critical behavior (triple critical points) than that of the
Born-Infeld term in the 5-dimensional AdS black hole.
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Recently, the charged black hole [63], Born-Infeld black
hole [64], and black hole in the Maxwell and Yang-Mills
fields [65] have been constructed in Gauss-Bonnet-massive
gravity. Only Van der Waals-like first-order SBH/LBH phase
transition exists in these models. In addition, the RPT and
triple points also occur in the higher-dimensional rotating
AdS black holes [66, 67] and higher-dimensional Gauss-
Bonnet AdS black hole [68–70]. It would be interesting to
extend our discussion to these black holes in Gauss-Bonnet
and 3rd-order Lovelock-massive gravity.
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