70,973 research outputs found
Rich, Sturmian, and trapezoidal words
In this paper we explore various interconnections between rich words,
Sturmian words, and trapezoidal words. Rich words, first introduced in
arXiv:0801.1656 by the second and third authors together with J. Justin and S.
Widmer, constitute a new class of finite and infinite words characterized by
having the maximal number of palindromic factors. Every finite Sturmian word is
rich, but not conversely. Trapezoidal words were first introduced by the first
author in studying the behavior of the subword complexity of finite Sturmian
words. Unfortunately this property does not characterize finite Sturmian words.
In this note we show that the only trapezoidal palindromes are Sturmian. More
generally we show that Sturmian palindromes can be characterized either in
terms of their subword complexity (the trapezoidal property) or in terms of
their palindromic complexity. We also obtain a similar characterization of rich
palindromes in terms of a relation between palindromic complexity and subword
complexity.Comment: 7 page
Enumeration and Structure of Trapezoidal Words
Trapezoidal words are words having at most distinct factors of length
for every . They therefore encompass finite Sturmian words. We give
combinatorial characterizations of trapezoidal words and exhibit a formula for
their enumeration. We then separate trapezoidal words into two disjoint
classes: open and closed. A trapezoidal word is closed if it has a factor that
occurs only as a prefix and as a suffix; otherwise it is open. We investigate
open and closed trapezoidal words, in relation with their special factors. We
prove that Sturmian palindromes are closed trapezoidal words and that a closed
trapezoidal word is a Sturmian palindrome if and only if its longest repeated
prefix is a palindrome. We also define a new class of words, \emph{semicentral
words}, and show that they are characterized by the property that they can be
written as , for a central word and two different letters .
Finally, we investigate the prefixes of the Fibonacci word with respect to the
property of being open or closed trapezoidal words, and show that the sequence
of open and closed prefixes of the Fibonacci word follows the Fibonacci
sequence.Comment: Accepted for publication in Theoretical Computer Scienc
On Christoffel and standard words and their derivatives
We introduce and study natural derivatives for Christoffel and finite
standard words, as well as for characteristic Sturmian words. These
derivatives, which are realized as inverse images under suitable morphisms,
preserve the aforementioned classes of words. In the case of Christoffel words,
the morphisms involved map to (resp.,~) and to
(resp.,~) for a suitable . As long as derivatives are
longer than one letter, higher-order derivatives are naturally obtained. We
define the depth of a Christoffel or standard word as the smallest order for
which the derivative is a single letter. We give several combinatorial and
arithmetic descriptions of the depth, and (tight) lower and upper bounds for
it.Comment: 28 pages. Final version, to appear in TC
On prefixal factorizations of words
We consider the class of all infinite words over
a finite alphabet admitting a prefixal factorization, i.e., a factorization
where each is a non-empty prefix of With
each one naturally associates a "derived" infinite word
which may or may not admit a prefixal factorization. We are
interested in the class of all words of
such that for all . Our primary
motivation for studying the class stems from its connection
to a coloring problem on infinite words independently posed by T. Brown in
\cite{BTC} and by the second author in \cite{LQZ}. More precisely, let be the class of all words such that for every finite
coloring there exist and a factorization
with for each In \cite{DPZ}
we conjectured that a word if and only if is purely
periodic. In this paper we show that so
in other words, potential candidates to a counter-example to our conjecture are
amongst the non-periodic elements of We establish several
results on the class . In particular, we show that a
Sturmian word belongs to if and only if is
nonsingular, i.e., no proper suffix of is a standard Sturmian word
Variational electrodynamics of Atoms
We generalize Wheeler-Feynman electrodynamics by the minimization of a finite
action functional defined for variational trajectories that are required to
merge continuously into given past and future boundary segments. We prove that
the boundary-value problem is well-posed for two classes of boundary data and
show that the well-posed solution in general has velocity discontinuities,
henceforth broken extrema. Along regular segments, broken extrema satisfy the
Euler-Lagrange neutral differential delay equations with state-dependent
deviating arguments. At points where velocities are discontinuous, broken
extrema satisfy the Weierstrass-Erdmann conditions that energies and momenta
are continuous. The electromagnetic fields of the variational trajectories are
derived quantities that can be extended only to a bounded region B of
space-time. For extrema with a finite number of velocity discontinuities,
extended fields are defined for all point in B with the exception of sets of
zero measure. The extended fields satisfy the integral laws of classical
electrodynamics for most surfaces and curves inside B. As an application, we
study globally bounded trajectories with vanishing far-fields for the
hydrogenoid atomic models of hydrogen, muonium and positronium. Our model uses
solutions of the neutral differential delay equations along regular segments
and a variational approximation for the collisional segments. Each hydrogenoid
model predicts a discrete set of finitely measured neighbourhoods of orbits
with vanishing far-fields at the correct atomic magnitude and in quantitative
and qualitative agreement with experiment and quantum mechanics, i.e., the
spacings between consecutive discrete angular momenta agree with Planck's
constant within thirty-percent, while orbital frequencies agree with a
corresponding spectroscopic line within a few percent.Comment: Full re-write using same equations and back to original title
(version 18 compiled with the wrong figure 5). A few commas introduced and
all paragraphs broken into smaller ones whenever possibl
Hund's metals, explained
A possible practical definition for a Hund's metal is given, as a metallic
phase - arising consistently in realistic simulations and experiments in
Fe-based superconductors and other materials - with three features: large
electron masses, high-spin local configurations dominating the paramagnetic
fluctuations and orbital-selective correlations. These features are triggered
by, and increase with the proximity to, a Hund's coupling-favored Mott
insulator that is realized for half-filled conduction bands. A clear crossover
line is found where these three features get enhanced, departing from the Mott
transition at half filling and extending in the interaction/doping plane,
between a normal (at weak interaction and large doping) and a Hund's metal (at
strong interaction and small doping). This phenomenology is found identically
in models with featureless bands, highlighting the generality of this physics
and its robustness by respect to the details of the material band structures.
Some analytical arguments are also given to gain insight into these defining
features. Finally the attention is brought on the recent theoretical finding of
enhanced/diverging electronic compressibility near the Hund's metal crossover,
pointing to enhanced quasiparticle interactions that can cause or boost
superconductivity or other instabilities.Comment: Lecture prepared for the Autumn School on Correlated Electrons, 25-29
September 2017, Juelich. To appear on: E. Pavarini, E. Koch, R. Scalettar,
and R. Martin (eds.) The Physics of Correlated Insulators, Metals, and
Superconductors Modeling and Simulation Vol. 7 Forschungszentrum Juelich,
2017, ISBN 978-3-95806-224-5 http://www.cond- mat.de/events/correl1
- …