19 research outputs found

    Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction

    Get PDF
    Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pHi) and Ca2+ ([Ca2+]i), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K+ ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K+ or by addition of solubilized zona pellucida (sZP). Moreover, K+ and sZP were also able to increase [Ca2+]i in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K+ concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca2+]i. Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction.Fil: de La Vega Beltrán, José Luis. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Sánchez Cárdenas, Claudia. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Krapf, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Hernández González, Enrique. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados; MéxicoFil: Wertheimer Hermitte, Eva Victoria. University of Massachussets; Estados UnidosFil: Trevinio, Claudia L.. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Darszon, Alberto. Universidad Nacional Autónoma de México. Instituto de Biotecnología; Méxic

    Cdc42 localized in the CatSper signaling complex regulates cAMP‐dependent pathways in mouse sperm

    Get PDF
    Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+-dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.Fil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Xu, Xinran. State University of Colorado - Fort Collins; Estados UnidosFil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. State University of Colorado - Fort Collins; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Orta, Gerardo. Universidad Autonoma de México. Instituto de Biotecnología; MéxicoFil: De la Vega Beltrán, José L.. Universidad Autonoma de México. Instituto de Biotecnología; MéxicoFil: Stival, Cintia Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gilio, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: D'alotto Moreno, Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Krapf, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Krapf, Diego. State University of Colorado - Fort Collins; Estados UnidosFil: Darszon, Alberto. Universidad Autonoma de México. Instituto de Biotecnología; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization.

    Get PDF
    Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K(+) concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K(+) channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K(+) and Cl(-) before capacitation, as well as Na(+). The permeability to both K(+) and Cl(-) has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K(+) channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1) elevation of external pH prior to capacitation and 2) capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract. Significantly, other events associated with sperm capacitation, occur in SLO3 mutant sperm and thus proceed independently of hyperpolarization

    [Na<sup>+</sup>]<sub>i</sub> is decreased in SLO3 mutant sperm and in sperm treated with the SLO3 inhibitor clofilium.

    No full text
    <p>Cauda epididymal sperm from wild type or SLO3 mutant mice were recovered and loaded with CoroNaRed in media lacking BSA and HCO<sub>3</sub><sup>−</sup> which does not support capacitation (Non Cap). After thirty minutes incubation, the sperm were washed once and resuspended in the same media or in media containing BSA and HCO<sub>3</sub><sup>−</sup> (Cap) in the absence or in the presence of clofilium (50 µM) (for wild-type sperm). After 1 hour incubation, PI was added and the sperm population analyzed by flow cytometry. A) SLO3 wild-type sperm: PI vs CoroNa Red two-dimensional dot plots of sperm incubated in non capacitating conditions (Non Cap), in media that support capacitation (Cap) or in media that support capacitation in the presence of clofilium (Cap+Clofilium 50 µM). The left merged panel combined data from Non Cap and Cap dot plots, the right merged panel combined the Cap and the Cap+clofilium dot plots. B) SLO3 mutant sperm: PI vs CoroNa Red two-dimensional dot plots of sperm incubated in non capacitating conditions (Non Cap) or in media that support capacitation (Cap). Live sperm populations in each case were then analyzed for their individual [Na<sup>+</sup>]<sub>i</sub> CoroNa Red fluorescence histograms (Non Cap and Cap); the merged panel combined both data. C) Summary for plots showed in A and B. The bars represent the mean n = 3 experiments ± S.E.M. NS indicates No statistical significance (P≥0.05), **indicates statistical significance (P≤0.01).</p

    Membrane potential measurements of wild-type and SLO3 mutant sperm in capacitated and non-capacitated conditions.

    No full text
    <p>Curves shown are GHK fits to (A) wild-type and (B) SLO3 mutant sperm, prior to and one hour after being subjected to capacitating conditions. The measured membrane potential values seen for capacitated wild-type sperm are likely to represent the average values for a mixed population of sperm (see text). Note that in (B) there is no predicted decrease in P<sub>Na</sub> in SLO3 mutant sperm subjected to capacitating conditions. The curves correspond to mean n = 11 experiments ± S.E.M. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060578#pone.0060578.s005" target="_blank">table S1</a> for membrane potential values.</p

    SLO3 mutant sperm do not hyperpolarize even at 180 min in capacitating conditions.

    No full text
    <p>Membrane potential measurements (A) and representative plots of florescence emission traces (B) at different capacitation times for wild-type and SLO3 mutant sperm. The bars represent the mean of n = 12 experiments. *indicates (P≤0.05); **indicates (P≤0.01). See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060578#pone.0060578.s006" target="_blank">table S2</a> for membrane potential values.</p

    Amiloride or the reduction of external Na<sup>+</sup> blocks most P<sub>Na</sub>, leaving the membrane dominated by P<sub>K</sub>.

    No full text
    <p>Amiloride treatment (A) and low external Na<sup>+</sup> (B) leave the sperm membrane dominated by P<sub>K</sub> in both wild-type and in SLO3 mutant sperm. After the addition of amiloride the P<sub>K</sub> to P<sub>Na</sub> ratio is somewhat larger in wild-type than in the SLO3 mutant, reflecting the activity of SLO3 K<sup>+</sup> channels in the membrane (see text). Although the SLO3 channel is absent in SLO3 mutant sperm, the dominance of P<sub>K</sub> over all other ion permeabilities in SLO3 mutant sperm is additional evidence for the presence of a K<sup>+</sup> leak conductance in SLO3 mutant sperm plasma membrane. GHK fits did not require inclusion of P<sub>Cl</sub> (see text). Since we cannot accurately predict the internal sodium concentration when external Na<sup>+</sup> is reduced to 1 mM, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060578#pone-0060578-g006" target="_blank">figure 6B</a> is fitted with least squares linear regression to compare the resulting slopes with that of a theoretical line illustrating pure potassium selectivity (red). Permeability values predicted by the GHK equation for A are given in (C). The curves correspond to mean n = 4 experiments ± S.E.M. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060578#pone.0060578.s010" target="_blank">table S6</a> for membrane potential values.</p
    corecore