53 research outputs found

    Pattern of healthcare resource utilization and direct costs associated with manic episodes in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although some studies indicate that bipolar disorder causes high health care resources consumption, no study is available addressing a cost estimation of bipolar disorder in Spain. The aim of this observational study was to evaluate healthcare resource utilization and the associated direct cost in patients with manic episodes in the Spanish setting.</p> <p>Methods</p> <p>Retrospective descriptive study was carried out in a consecutive sample of patients with a DSM-IV diagnosis of bipolar type I disorder with or without psychotic symptoms, aged 18 years or older, and who were having an active manic episode at the time of inclusion. Information regarding the current manic episode was collected retrospectively from the medical record and patient interview.</p> <p>Results</p> <p>Seven hundred and eighty-four evaluable patients, recruited by 182 psychiatrists, were included in the study. The direct cost associated with healthcare resource utilization during the manic episode was high, with a mean cost of nearly €4,500 per patient, of which approximately 55% corresponded to the cost of hospitalization, 30% to the cost of psychopharmacological treatment and 10% to the cost of specialized care.</p> <p>Conclusions</p> <p>Our results show the high cost of management of the patient with a manic episode, which is mainly due to hospitalizations. In this regard, any intervention on the management of the manic patient that could reduce the need for hospitalization would have a significant impact on the costs of the disease.</p

    The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome

    Get PDF
    Background: Microorganisms serve important functions within numerous eukaryotic host organisms. An understanding of the variation in the plant niche-level microbiome, from rhizosphere soils to plant canopies, is imperative to gain a better understanding of how both the structural and functional processes of microbiomes impact the health of the overall plant holobiome. Using Populus trees as a model ecosystem, we characterized the archaeal/bacterial and fungal microbiome across 30 different tissue-level niches within replicated Populus deltoides and hybrid Populus trichocarpa × deltoides individuals using 16S and ITS2 rRNA gene analyses. Results: Our analyses indicate that archaeal/bacterial and fungal microbiomes varied primarily across broader plant habitat classes (leaves, stems, roots, soils) regardless of plant genotype, except for fungal communities within leaf niches, which were greatly impacted by the host genotype. Differences between tree genotypes are evident in the elevated presence of two potential fungal pathogens, Marssonina brunnea and Septoria sp., on hybrid P. trichocarpa × deltoides trees which may in turn be contributing to divergence in overall microbiome composition. Archaeal/bacterial diversity increased from leaves, to stem, to root, and to soil habitats, whereas fungal diversity was the greatest in stems and soils. Conclusions: This study provides a holistic understanding of microbiome structure within a bioenergy relevant plant host, one of the most complete niche-level analyses of any plant. As such, it constitutes a detailed atlas or map for further hypothesis testing on the significance of individual microbial taxa within specific niches and habitats of Populus and a baseline for comparisons to other plant species

    Using high resolution cardiac CT data to model and visualize patient-specific interactions between trabeculae and blood flow

    No full text
    Abstract. In this paper, we present a method to simulate and visualize blood flow through the human heart, using the reconstructed 4D motion of the endocardial surface of the left ventricle as boundary conditions. The reconstruction captures the motion of the full 3D surfaces of the complex features, such as the papillary muscles and the ventricular trabeculae. We use visualizations of the flow field to view the interactions between the blood and the trabeculae in far more detail than has been achieved previously, which promises to give a better understanding of cardiac flow. Finally, we use our simulation results to compare the blood flow within one healthy heart and two diseased hearts.

    Phylogenetically diverse endophytic bacteria from desert plants induce transcriptional changes of tissue-specific ion transporters and salinity stress in <em>Arabidopsis thaliana</em>

    No full text
    Salinity severely hampers crop productivity worldwide and plant growth promoting bacteria could serve as a sustainable solution to improve plant growth under salt stress. However, the molecular mechanisms underlying salt stress tolerance promotion by beneficial bacteria remain unclear. In this work, six bacterial isolates from four different desert plant species were screened for their biochemical plant growth promoting traits and salinity stress tolerance promotion of the unknown host plant Arabidopsis thaliana. Five of the isolates induced variable root phenotypes but could all increase plant shoot and root weight under salinity stress. Inoculation of Arabidopsis with five isolates under salinity stress resulted in tissue-specific transcriptional changes of ion transporters and reduced Na+/K+ shoot ratios. The work provides first insights into the possible mechanisms and the commonality by which phylogenetically diverse bacteria from different desert plants induce salinity stress tolerance in Arabidopsis. The bacterial isolates provide new tools for studying abiotic stress tolerance mechanisms in plants and a promising agricultural solution for increasing crop yields in semi-arid regions

    Modelisation de l'injection des elastomeres

    No full text
    Available from INIST (FR), Document Supply Service, under shelf-number : AR 16170 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEMinistere de la Recherche et de l'Espace (MRE), 75 - Paris (France)FRFranc
    corecore