17,342 research outputs found

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200

    Microscopic Model for Granular Stratification and Segregation

    Full text link
    We study segregation and stratification of mixtures of grains differing in size, shape and material properties poured in two-dimensional silos using a microscopic lattice model for surface flows of grains. The model incorporates the dissipation of energy in collisions between rolling and static grains and an energy barrier describing the geometrical asperities of the grains. We study the phase diagram of the different morphologies predicted by the model as a function of the two parameters. We find regions of segregation and stratification, in agreement with experimental finding, as well as a region of total mixing.Comment: 4 pages, 7 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Heat Capacity and Magnetic Phase Diagram of the Low-Dimensional Antiferromagnet Y2_2BaCuO5_5

    Full text link
    A study by specific heat of a polycrystalline sample of the low-dimensional magnetic system Y2_2BaCuO5_5 is presented. Magnetic fields up to 14 T are applied and permit to extract the (TT,HH) phase diagram. Below μ0H∗≃2\mu_0H^*\simeq2 T, the N\'eel temperature, associated with a three-dimensional antiferromagnetic long-range ordering, is constant and equals TN=15.6T_N=15.6 K. Above H∗H^*, TNT_N increases linearly with HH and a field-induced increase of the entropy at TNT_N is related to the presence of an isosbestic point at TX≃20T_X\simeq20 K, where all the specific heat curves cross. A comparison is made between Y2_2BaCuO5_5 and the quasi-two-dimensional magnetic systems BaNi2_{2}V2_{2}O8_{8}, Sr2_2CuO2_2Cl2_2, and Pr2_2CuO4_4, for which very similar phase diagrams have been reported. An effective field-induced magnetic anisotropy is proposed to explain these phase diagrams.Comment: 14 pages, 7 figure

    Electric field control of multiferroic domains in Ni3_3V2_2O8_8 imaged by X-ray polarization enhanced topography

    Full text link
    The magnetic structure of multiferroic Ni3_3V2_2O8_8 has been investigated using non-resonant X-ray magnetic scattering. Incident circularly polarized X-rays combined with full polarization analysis of the scattered beam is shown to yield high sensitivity to the components of the cycloidal magnetic order, including their relative phases. New information on the magnetic structure in the ferroelectric phase is obtained, where it is found that the magnetic moments on the "cross-tie" sites are quenched relative to those on the "spine" sites. This implies that the onset of ferroelectricity is associated mainly with spine site magnetic order. We also demonstrate that our technique enables the imaging of multiferroic domains through polarization enhanced topography. This approach is used to image the domains as the sample is cycled by an electric field through its hysteresis loop, revealing the gradual switching of domains without nucleation.Comment: 9 pages, 6 figure

    Non-standard quantum so(3,2) and its contractions

    Full text link
    A full (triangular) quantum deformation of so(3,2) is presented by considering this algebra as the conformal algebra of the 2+1 dimensional Minkowskian spacetime. Non-relativistic contractions are analysed and used to obtain quantum Hopf structures for the conformal algebras of the 2+1 Galilean and Carroll spacetimes. Relations between the latter and the null-plane quantum Poincar\'e algebra are studied.Comment: 9 pages, LaTe

    Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane

    Get PDF
    Despite being engineered to avoid renal clearance, many cationic polymer (polycation)-based siRNA nanoparticles that are used for systemic delivery are rapidly eliminated from the circulation. Here, we show that a component of the renal filtration barrier—the glomerular basement membrane (GBM)—can disassemble cationic cyclodextrin-containing polymer (CDP)-based siRNA nanoparticles and, thereby, facilitate their rapid elimination from circulation. Using confocal and electron microscopies, positron emission tomography, and compartment modeling, we demonstrate that siRNA nanoparticles, but not free siRNA, accumulate and disassemble in the GBM. We also confirm that the siRNA nanoparticles do not disassemble in blood plasma in vitro and in vivo. This clearance mechanism may affect any nanoparticles that assemble primarily by electrostatic interactions between cationic delivery components and anionic nucleic acids (or other therapeutic entities)

    Medium Effects on Binary Collisions with the Delta Resonance

    Full text link
    To facilitate the relativistic heavy-ion calculations based on transport equations, the binary collisions involving a Δ\Delta resonance in either the entrance channel or the exit channel are investigated within a Hamiltonian formulation of πNN\pi NN interactions. An averaging procedure is developed to define a quasi-particle Δ∗\Delta^* and to express the experimentally measured NN→πNNNN\rightarrow \pi NN cross section in terms of an effective NN→NΔ∗NN\rightarrow N\Delta^\ast cross section. In contrast to previous works, the main feature of the present approach is that the mass and the momentum of the produced Δ∗\Delta^*'s are calculated dynamically from the bare Δ↔πN\Delta \leftrightarrow \pi N vertex interaction of the model Hamiltonian and are constrained by the unitarity condition. The procedure is then extended to define the effective cross sections for the experimentally inaccessible NΔ∗→NNN\Delta^\ast \rightarrow NN and NΔ∗→NΔ∗N\Delta^\ast \rightarrow N\Delta^\ast reactions. The predicted cross sections are significantly different from what are commonly assumed in relativistic heavy-ion calculations. The Δ\Delta potential in nuclear matter has been calculated by using a Bruckner-Hartree-Fock approximation. By including the mean-field effects on the Δ\Delta propagation, the effective cross sections of the NN→NΔ∗NN\rightarrow N\Delta^\ast, NΔ∗→NNN\Delta^\ast \rightarrow NN and NΔ∗→NΔ∗N\Delta^\ast \rightarrow N\Delta^\ast reactions in nuclear matter are predicted. It is demonstrated that the density dependence is most dramatic in the energy region close to the pion production threshold.Comment: 20 pages, RevTe

    Spectroscopic determination of hole density in the ferromagnetic semiconductor Ga1−x_{1-x}Mnx_{x}As

    Full text link
    The measurement of the hole density in the ferromagnetic semiconductor Ga1−x_{1-x}Mnx_{x}As is notoriously difficult using standard transport techniques due to the dominance of the anomalous Hall effect. Here, we report the first spectroscopic measurement of the hole density in four Ga1−x_{1-x}Mnx_{x}As samples (x=0,0.038,0.061,0.083x=0, 0.038, 0.061, 0.083) at room temperature using Raman scattering intensity analysis of the coupled plasmon-LO-phonon mode and the unscreened LO phonon. The unscreened LO phonon frequency linearly decreases as the Mn concentration increases up to 8.3%. The hole density determined from the Raman scattering shows a monotonic increase with increasing xx for x≤0.083x\leq0.083, exhibiting a direct correlation to the observed TcT_c. The optical technique reported here provides an unambiguous means of determining the hole density in this important new class of ``spintronic'' semiconductor materials.Comment: two-column format 5 pages, 4 figures, to appear in Physical Review
    • …
    corecore