1,995 research outputs found

    Microwave Induced Instability Observed in BSCCO 2212 in a Static Magnetic Field

    Full text link
    We have measured the microwave dissipation at 10 GHz through the imaginary part of the susceptibility, χ"\chi^", in a BSCCO 2212 single crystal in an external static magnetic field HH parallel to the c-axis at various fixed temperatures. The characteristics of χ"(H)\chi^"(H) exhibit a sharp step at a field HstepH_{step} which strongly depends on the amplitude of the microwave excitation hach_{ac}. The characteristics of hach_{ac} vs. HstepH_{step}, qualitatively reveal the behavior expected for the magnetic field dependence of Josephson coupling.Comment: 4 pages, 3 Postscript figure

    Point Contact Spectroscopy of Superconducting Gap Anisotropy in Nickel Borocarbide Compound LuNi2B2C

    Get PDF
    Point contacts are used to investigate the anisotropy of the superconducting energy gap in LuNi2B2C in the ab plane and along the c axis. It is shown that the experimental curves should be described assuming that the superconducting gap is non-uniformly distributed over the Fermi surface. The largest and the smallest gaps have been estimated by two-gap fitting models. It is found that the largest contribution to the point-contact conductivity in the c direction is made by a smaller gap and, in the ab plane by a larger gap. The deviation from the one-gap BCS model is pronounced in the temperature dependence of the gap in both directions. The temperature range, where the deviation occurs, is for the c direction approximately 1.5 times more than in the ab plane. The \Gamma parameter, allowing quantitatively estimate the gap anisotropy by one-gap fitting, in c direction is also about 1.5 times greater than in the ab plane. Since it is impossible to describe satisfactorily such gap distribution either by the one- or two-gap models, a continuous, dual-maxima model of gap distribution over the Fermi surface should be used to describe superconductivity in this material.Comment: 10 pages, 14 Figs, accepted in PR

    A Path Integral Approach To Noncommutative Superspace

    Get PDF
    A path integral formula for the associative star-product of two superfields is proposed. It is a generalization of the Kontsevich-Cattaneo-Felder's formula for the star-product of functions of bosonic coordinates. The associativity of the star-product imposes certain conditions on the background of our sigma model. For generic background the action is not supersymmetric. The supersymmetry invariance of the action constrains the background and leads to a simple formula for the star-product.Comment: Latex 13 pages. v2: references and footnotes adde

    Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens

    Get PDF
    We study the classical first-kind boundary integral equation reformulations of time-harmonic acoustic scattering by planar sound-soft (Dirichlet) and sound-hard (Neumann) screens. We prove continuity and coercivity of the relevant boundary integral operators (the acoustic single-layer and hypersingular operators respectively) in appropriate fractional Sobolev spaces, with wavenumber-explicit bounds on the continuity and coercivity constants. Our analysis is based on spectral representations for the boundary integral operators, and builds on results of Ha-Duong (Jpn J Ind Appl Math 7:489--513 (1990) and Integr Equat Oper Th 15:427--453 (1992)).Comment: v2 has minor corrections compared to v1. arXiv admin note: substantial text overlap with arXiv:1401.280
    corecore