1,803 research outputs found

    Internal combustion engine sensor network analysis using graph modeling

    Get PDF
    In recent years there has been a rapid development in technologies for smart monitoring applied to many different areas (e.g. building automation, photovoltaic systems, etc.). An intelligent monitoring system employs multiple sensors distributed within a network to extract useful information for decision-making. The management and the analysis of the raw data derived from the sensor network includes a number of specific challenges still unresolved, related to the different communication standards, the heterogeneous structure and the huge volume of data. In this paper we propose to apply a method based on complex network theory, to evaluate the performance of an Internal Combustion Engine. Data are gathered from the OBD sensor subset and from the emission analyzer. The method provides for the graph modeling of the sensor network, where the nodes are represented by the sensors and the edge are evaluated with non-linear statistical correlation functions applied to the time series pairs. The resulting functional graph is then analyzed with the topological metrics of the network, to define characteristic proprieties representing useful indicator for the maintenance and diagnosis

    Causality estimates among brain cortical areas by Partial Directed Coherence: simulations and application to real data

    Get PDF
    The problem of the definition and evaluation of brain connectivity has become a central one in neuroscience during the latest years, as a way to understand the organization and interaction of cortical areas during the execution of cognitive or motor tasks. Among various methods established during the years, the Partial Directed Coherence (PDC) is a frequency-domain approach to this problem, based on a multivariate autoregressive modeling of time series and on the concept of Granger causality. In this paper we propose the use of the PDC method on cortical signals estimated from high resolution EEG recordings, a non invasive method which exhibits a higher spatial resolution than conventional cerebral electromagnetic measures. The principle contributions of this work are the results of a simulation study, testing the performances of PDC, and a statistical analysis (via the ANOVA, analysis of variance) of the influence of different levels of Signal to Noise Ratio and temporal length, as they have been systematically imposed on simulated signals. An application to high resolution EEG recordings during a foot movement is also presented

    Thrombosis of the left anterior descending artery due to compression from giant pseudoaneurysm late after a bentall operation.

    Get PDF
    BACKGROUND: A postoperative pseudoaneurysm may develop and gradually expand in the mediastinal space even late following Bentall operation for aortic root replacement, particularly in patients with dissection of the aorta. METHODS: A very large (148 mm) pseudoaneurysm originating of the right coronary ostium suture line was observed in a patient admitted with unstable angina 6 years after Bentall procedure for type A aortic dissection. Angiograms showed reduced flow in the right coronary and thrombotic subocclusion of the left anterior descending (LAD) coronary artery due to extrinsic compression from the expanding mediastinal mass. RESULTS: Reoperation was performed during femoro-femoral cardiopulmonary bypass and brief period of circulatory arrest to clamp the tubular graft. After closure of the detected right coronary ostium in the tubular graft double bypass, grafting to the right coronary and LAD arteries was required. Postoperative course was uneventful. CONCLUSIONS: Close long-term follow-up after a Bentall procedure is required to minimize the risk of developing a large pseudoaneurysmal mass, in particular, after dissection of the aorta

    Contrasting Physiological and Environmental Controls of Evapotranspiration over Kernza Perennial Crop, Annual Crops, and C4 and Mixed C3/C4 Grasslands

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Perennial grain crops have been suggested as a more sustainable alternative to annual crops. Yet their water use and how they are impacted by environmental conditions have been seldom compared to those of annual crops and grasslands. Here, we identify the dominant mechanisms driving evapotranspiration (ET), and how they change with environmental conditions in a perennial Kernza crop (US-KLS), an annual crop field (US-ARM), a C4 grassland (US-KON), and a mixed C3/C4 grassland (US-KFS) in the Central US. More specifically, we have utilized the omega (Ω) decoupling factor, which reflects the dominant mechanisms responsible for the evapotranspiration (ET) of the canopy. Our results showed that the US-ARM site was the most coupled with the lowest decoupling values. We also observed differences in coupling mechanism variables, showing more sensitivity to the water fluctuation variables as opposed to the radiative flux variables. All of the sites showed their lowest Ω value in 2012, the year of the severe drought in the Central US. The 2012 results further indicate the dependence on the water fluctuation variables. This was especially true with the perennial Kernza crop, which displayed much higher soil moisture values. In this regard, we believe that the ability of perennial Kernza to resist water stress and retain higher soil moisture values is both a result of its deeper roots, in addition to its higher Ω value. Through the analysis of both the site comparison and the comparison of the differences in years, we conclude that the perennial Kernza crop (US-KLS) is more similar in its microclimate effects to the C4 (US-KON) and mixed C3/C4 (US-KFS) grassland sites as opposed to its annual counterpart (US-ARM). This has implications for the role of perennial agriculture for addressing agricultural resilience under changing climate conditions

    Cytotoxicity of an innovative pressurised cyclic solid–liquid (Pcsl) extract from artemisia annua

    Get PDF
    Therapeutic treatments with Artemisia annua have a long-established tradition in various diseases due to its antibacterial, antioxidant, antiviral, anti-malaria and anti-cancer effects. However, in relation to the latter, virtually all reports focused on toxic effects of A. annua extracts were obtained mostly through conventional maceration methods. In the present study, an innovative extraction procedure from A. annua, based on pressurised cyclic solid–liquid (PCSL) extraction, resulted in the production of a new phytocomplex with enhanced anti-cancer properties. This extraction procedure generated a pressure gradient due to compressions and following decompressions, allowing to directly perform the extraction without any maceration. The toxic effects of A. annua PCSL extract were tested on different cells, including three cancer cell lines. The results of this study clearly indicate that the exposure of human, murine and canine cancer cells to serial dilutions of PCSL extract resulted in higher toxicity and stronger propensity to induce apoptosis than that detected by subjecting the same cells to Artemisia extracts obtained through canonical extraction by maceration. Collected data suggest that PCSL extract of A. annua could be a promising and economic new therapeutic tool to treat human and animal tumours

    Percutaneous transfemoral-transseptal implantation of a second-generation CardiAQâ„¢ mitral valve bioprosthesis: first procedure description and 30-day follow-up

    Get PDF
    Transcatheter mitral valve implantation for mitral valve regurgitation is in the very early phase of development because of challenging anatomy and device dimensions. We describe the procedure of a transfemoral-transseptal implantation of the second-generation CardiAQâ„¢ mitral valve bioprosthesis and 30-day follow-up
    • …
    corecore