94,033 research outputs found

    ApuA, a multifunctional x-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus

    Get PDF
    We have identified apuA in Streptococcus suis, which encodes a bifunctional amylopullulanase with conserved -amylase and pullulanase substrate-binding domains and catalytic motifs. ApuA exhibited properties typical of a Gram-positive surface protein, with a putative signal sequence and LPKTGE cell-wall-anchoring motif. A recombinant protein containing the predicted N-terminal -amylase domain of ApuA was shown to have -(1,4) glycosidic activity. Additionally, an apuA mutant of S. suis lacked the pullulanase -(1,6) glycosidic activity detected in a cell-surface protein extract of wild-type S. suis. ApuA was required for normal growth in complex medium containing pullulan as the major carbon source, suggesting that this enzyme plays a role in nutrient acquisition in vivo via the degradation of glycogen and food-derived starch in the nasopharyngeal and oral cavities. ApuA was shown to promote adhesion to porcine epithelium and mucus in vitro, highlighting a link between carbohydrate utilization and the ability of S. suis to colonize and infect the host

    Cluster and nebular properties of the central star-forming region of NGC 1140

    Get PDF
    We present new high spatial resolution HST/ACS imaging of NGC 1140 and high spectral resolution VLT/UVES spectroscopy of its central star-forming region. The central region contains several clusters, the two brightest of which are clusters 1 and 6 from Hunter, O'Connell & Gallagher, located within star-forming knots A and B, respectively. Nebular analysis indicates that the knots have an LMC-like metallicity of 12 + log(O/H) = 8.29 +/- 0.09. According to continuum subtracted H alpha ACS imaging, cluster 1 dominates the nebular emission of the brighter knot A. Conversely, negligible nebular emission in knot B originates from cluster 6. Evolutionary synthesis modelling implies an age of 5 +/- 1 Myr for cluster 1, from which a photometric mass of (1.1 +/- 0.3) x 10^6 Msun is obtained. For this age and photometric mass, the modelling predicts the presence of ~5900 late O stars within cluster 1. Wolf-Rayet features are observed in knot A, suggesting 550 late-type WN and 200 early-type WC stars. Therefore, N(WR)/N(O) ~ 0.1, assuming that all the WR stars are located within cluster 1. The velocity dispersions of the clusters were measured from constituent red supergiants as sigma ~ 23 +/- 1 km/s for cluster 1 and sigma ~ 26 +/- 1 km/s for cluster 6. Combining sigma with half-light radii of 8 +/- 2 pc and 6.0 +/- 0.2 pc measured from the F625W ACS image implies virial masses of (10 +/- 3) x 10^6 Msun and (9.1 +/- 0.8) x 10^6 Msun for clusters 1 and 6, respectively. The most likely reason for the difference between the dynamical and photometric masses of cluster 1 is that the velocity dispersion of knot A is not due solely to cluster 1, as assumed, but has an additional component associated with cluster 2.Comment: 13 pages, 7 figure

    Discrepancies in Determinations of the Ginzburg-Landau Parameter

    Full text link
    Long-standing discrepancies within determinations of the Ginzburg-Landau parameter κ\kappa from supercritical field measurements on superconducting microspheres are reexamined. The discrepancy in tin is shown to result from differing methods of analyses, whereas the discrepancy in indium is a consequence of significantly differing experimental results. The reanalyses however confirms the lower κ\kappa determinations to within experimental uncertainties.Comment: submitted to Phys. Rev.

    The Young Cluster Population of M82 Region B

    Full text link
    We present observations obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope of the "fossil" starburst region B in the nearby starburst galaxy M82. By comparing UBVI photometry with models, we derive ages and extinctions for 35 U-band selected star clusters. We find that the peak epoch of cluster formation occurred ~ 150 Myr ago, in contrast to earlier work that found a peak formation age of 1.1 Gyr. The difference is most likely due to our inclusion of U-band data, which are essential for accurate age determinations of young cluster populations. We further show that the previously reported turnover in the cluster luminosity function is probably due to the neglect of the effect of extended sources on the detection limit. The much younger cluster ages we derive clarifies the evolution of the M82 starburst. The M82-B age distribution now overlaps with the ages of: the nuclear starburst; clusters formed on the opposite side of the disk; and the last encounter with M81, some 220 Myr ago.Comment: 11 pages, 4 figures, accepted for publication in ApJ Letter
    • …
    corecore