51,106 research outputs found
Contexts for questioning: Two zones of teaching and learning in undergraduate science
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science+Business Media B.V. 2012.Higher education institutions are currently undertaking a challenging process in moving from teacher-orientated to student-focused approaches. Studentsâ ability to asking questions is fundamental to developing critical reasoning, and to the process of scientific enquiry itself. Our premise is that questioning competences should become a central focus of current reforms in higher education. This study, part of a broader naturalistic research project, aims at developing a theoretical framework for conceptualizing different contexts for questioning, illustrating the application of the proposed framework (contextual questioning zones) and reflecting about some of the dimensions of teaching and learning, for overcoming some of the challenges that higher education institutions are facing presently. The discussion of two âoppositeâ contexts of enquiry is based on qualitative data, gathered through close collaboration with four teachers of undergraduate biology at a Portuguese university. These teachers were observed during their âdaily activityâ during an academic year. Data was also gathered by interviewing these teachers and 8 selected students, at the end of the year, and used to sustain the argumentation. The paper concludes with some reflections and suggestions to promote authentic enquiry-based learning experiences.Portuguese FundaçaÌo para a CiĂȘncia e a Tecnologi
Vacuum fluctuations of a scalar field near a reflecting boundary and their effects on the motion of a test particle
The contribution from quantum vacuum fluctuations of a real massless scalar
field to the motion of a test particle that interacts with the field in the
presence of a perfectly reflecting flat boundary is here investigated. There is
no quantum induced dispersions on the motion of the particle when it is alone
in the empty space. However, when a reflecting wall is introduced, dispersions
occur with magnitude dependent on how fast the system evolves between the two
scenarios. A possible way of implementing this process would be by means of an
idealized sudden switching, for which the transition occurs instantaneously.
Although the sudden process is a simple and mathematically convenient
idealization it brings some divergences to the results, particularly at a time
corresponding to a round trip of a light signal between the particle and the
wall. It is shown that the use of smooth switching functions, besides
regularizing such divergences, enables us to better understand the behavior of
the quantum dispersions induced on the motion of the particle. Furthermore, the
action of modifying the vacuum state of the system leads to a change in the
particle energy that depends on how fast the transition between these states is
implemented. Possible implications of these results to the similar case of an
electric charge near a perfectly conducting wall are discussed.Comment: 17 pages, 8 figure
Clear and Compress: Computing Persistent Homology in Chunks
We present a parallelizable algorithm for computing the persistent homology
of a filtered chain complex. Our approach differs from the commonly used
reduction algorithm by first computing persistence pairs within local chunks,
then simplifying the unpaired columns, and finally applying standard reduction
on the simplified matrix. The approach generalizes a technique by G\"unther et
al., which uses discrete Morse Theory to compute persistence; we derive the
same worst-case complexity bound in a more general context. The algorithm
employs several practical optimization techniques which are of independent
interest. Our sequential implementation of the algorithm is competitive with
state-of-the-art methods, and we improve the performance through parallelized
computation.Comment: This result was presented at TopoInVis 2013
(http://www.sci.utah.edu/topoinvis13.html
De Branges spaces and Krein's theory of entire operators
This work presents a contemporary treatment of Krein's entire operators with
deficiency indices and de Branges' Hilbert spaces of entire functions.
Each of these theories played a central role in the research of both renown
mathematicians. Remarkably, entire operators and de Branges spaces are
intimately connected and the interplay between them has had an impact in both
spectral theory and the theory of functions. This work exhibits the
interrelation between Krein's and de Branges' theories by means of a functional
model and discusses recent developments, giving illustrations of the main
objects and applications to the spectral theory of difference and differential
operators.Comment: 37 pages, no figures. The abstract was extended. Typographical errors
were corrected. The bibliography style was change
Tunable asymmetric magnetoimpedance effect in ferromagnetic NiFe/Cu/Co films
We investigate the magnetization dynamics through the magnetoimpedance effect
in ferromagnetic NiFe/Cu/Co films. We observe that the magnetoimpedance
response is dependent on the thickness of the non-magnetic Cu spacer material,
a fact associated to the kind of the magnetic interaction between the
ferromagnetic layers. Thus, we present an experimental study on asymmetric
magnetoimpedance in ferromagnetic films with biphase magnetic behavior and
explore the possibility of tuning the linear region of the magnetoimpedance
curves around zero magnetic field by varying the thickness of the non-magnetic
spacer material, and probe current frequency. We discuss the experimental
magnetoimpedance results in terms of the different mechanisms governing the
magnetization dynamics at distinct frequency ranges, quasi-static magnetic
properties, thickness of the non-magnetic spacer material, and the kind of the
magnetic interaction between the ferromagnetic layers. The results place
ferromagnetic films with biphase magnetic behavior exhibiting asymmetric
magnetoimpedance effect as a very attractive candidate for application as probe
element in the development of auto-biased linear magnetic field sensors.Comment: 5 figure
Some properties of two Nambu--Jona-Lasinio -type models with inputs from lattice QCD
We investigate the phase diagram of the so-called
Polyakov--Nambu--Jona-Lasinio (PNJL) model at finite temperature and nonzero
chemical potential. The calculations are performed in the light and strange
quark sectors (, , ), which includes the 't Hooft instanton induced
interaction term that breaks the axial symmetry, and the quarks are coupled to
the (spatially constant) temporal background gauge field. On one hand, a
special attention is payed to the critical end point (CEP). The strength of the
flavor-mixing interaction alters the CEP location, since when it becomes weaker
the CEP moves to low temperatures and can even disappear. On the other hand, we
also explore the connection between QCD, a nonlocal Nambu--Jona-Lasinio type
model and the Landau gauge gluon propagator. Possible links between the
quenched gluon propagator and low energy hadronic phenomenology are
investigated.Comment: Contribution to the International Meeting "Excited QCD", Peniche,
Portugal, 06 - 12 May 201
- âŠ