7 research outputs found

    Investigation of the Stark Effect on a Centrosymmetric Quantum Emitter in Diamond

    No full text
    Quantum emitters in diamond are leading optically accessible solid-state qubits. Among these, Group IV-vacancy defect centers have attracted great interest as coherent and stable optical interfaces to long-lived spin states. Theory indicates that their inversion symmetry provides first-order insensitivity to stray electric fields, a common limitation for optical coherence in any host material. Here we experimentally quantify this electric field dependence via an external electric field applied to individual tin-vacancy (SnV) centers in diamond. These measurements reveal that the permanent electric dipole moment and polarizability are at least 4 orders of magnitude smaller than for the diamond nitrogen vacancy (NV) centers, representing the first direct measurement of the inversion symmetry protection of a Group IV defect in diamond. Moreover, we show that by modulating the electric-field-induced dipole we can use the SnV as a nanoscale probe of local electric field noise, and we employ this technique to highlight the effect of spectral diffusion on the SnV.QID/Hanson La

    Single photon emission from waveguide-integrated color centers in silicon

    No full text
    We demonstrate silicon color centers coupled to foundry-compatible silicon waveguides. We produced G-centers via carbon implantation in commercial silicon-on-insulator waveguides and measure through-waveguide single-photon emission in the telecommunications O-band.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QID/Hanson La

    Cavity-enhanced emission from an ensemble of color centers in silicon

    No full text
    Optical quantum technologies require strong light-matter interaction. We couple silicon color center ensembles to high-Q/V cavities and show enhanced emission in the telecommunications O-band.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QID/Hanson La

    Heralded initialization of charge state and optical-transition frequency of diamond tin-vacancy centers

    No full text
    Diamond tin-vacancy centers have emerged as a promising platform for quantum information science and technology. A key challenge for their use in more-complex quantum experiments and scalable applications is the ability to prepare the center in the desired charge state with the optical transition at a predefined frequency. Here we report on heralding such successful preparation using a combination of laser excitation, photon detection, and real-time logic. We first show that fluorescence photon counts collected during an optimized resonant probe pulse strongly correlate with the subsequent charge state and optical-transition frequency, enabling real-time heralding of the desired state through threshold photon counting. We then implement and apply this heralding technique to photoluminescence-excitation measurements, coherent optical driving, and an optical Ramsey experiment, finding strongly increased optical coherence with increasing threshold. Finally, we demonstrate that the prepared optical frequency follows the probe laser across the inhomogeneous linewidth, enabling tuning of the transition frequency over multiple homogeneous linewidths.QID/Hanson LabQID/Taminiau LabQN/Hanson La

    Quantum Control of the Tin-Vacancy Spin Qubit in Diamond

    No full text
    Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices. The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing and robust cyclicity of its optical transitions toward spin-photon-entanglement schemes. Here, we demonstrate multiaxis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive between the ground and excited states. We use coherent population trapping and optically driven electronic spin resonance to confirm coherent access to the qubit at 1.7 K and obtain spin Rabi oscillations at a rate of ω/2π=19.0(1) MHz. All-optical Ramsey interferometry reveals a spin dephasing time of T2∗=1.3(3) μs, and four-pulse dynamical decoupling already extends the spin-coherence time to T2=0.30(8) ms. Combined with transform-limited photons and integration into photonic nanostructures, our results make the SnV a competitive spin-photon building block for quantum networks.QID/Hanson La

    Quantum Control of the Tin-Vacancy Spin Qubit in Diamond

    No full text
    Group-IV colour centres in diamond are a promising light-matter interface for quantum networking devices. We demonstrate multiaxis coherent control of the SnV spin-qubit via an all-optical stimulated Raman drive between the ground and excited states.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QID/Hanson La
    corecore