5,398 research outputs found

    Shadows of Relic Neutrino Masses and Spectra on Highest Energy GZK Cosmic Rays

    Full text link
    The Ultra High Energy (UHE) neutrino scattering onto relic cosmic neutrinos in galactic and local halos offers an unique way to overcome GZK cut-off. The UHE nu secondary of UHE photo-pion decays may escape the GZK cut-off and travel on cosmic distances hitting local light relic neutrinos clustered in dark halos. The Z resonant production and the competitive W^+W^-, ZZ pair production define a characteristic imprint on hadronic consequent UHECR spectra. This imprint keeps memory both of the primary UHE nu spectra as well as of the possible relic neutrino masses values, energy spectra and relic densities. Such an hadronic showering imprint should reflect into spectra morphology of cosmic rays near and above GZK 10^{19}-10^{21}eV cut-off energies. A possible neutrino degenerate masses at eVs or a more complex and significant neutrino mass split below or near Super-Kamiokande \triangle m_{\nu_{SK}}= 0.1 eV masses might be reflected after each corresponding Z peak showering, into new twin unexpected UHECR flux modulation behind GZK energies: E_{p} sim 3(frac{triangle m_{\nu_{SK}}}/m_{\nu}10^{21}),eV. Other shadowsof lightest, nearly massless, neutrinos m_{nu_{2K} simeq 0.001eV simeq kT_{\nu}, their lowest relic temperatures, energies and densities might be also reflected at even higher energies edges near Grand Unification: E_{p} \sim 2.2(m_{\nu_{2K}/E_{\nu}})10^{23}, eV .Comment: 14 pages, 6 Figures,Invited Talk Heidelberg DARK 200

    Paper Session I-B - Science and Application Payloads in the 90\u27s

    Get PDF
    During the 90\u27s with the operation of the Extended Duration Orbiter (EDO), Space Station Freedom (SSF), large platforms in polar and geosynchronus orbits around the Earth, and supporting systems and technology, an infrastructure will exist that will offer a wide range of opportunities for science and applications payloads. The Marshall Space Flight Center (MSFC) is in a unique position of studying for NASA science missions for all of these systems. This paper will discuss a variety of payloads being studied for NASA at the MSFC that are scheduled for flight in the 90\u27s, in support of space science and Mission to Planet Earth. These science payloads such as the Controls, Astrophysics and Structures Experiment in Space (CASES), Advanced Solar Observatory (ASO), Laser Atmospheric Wind Sounder (LAWS), and Lightning Imaging Sensor (LIS), etc. will fully utilize the capabilities of the EDO, SSF, Earth Observation System (EOS), and Earth Science Geostationary Platform (ESGP). Emphasis will be placed on showing how these scientific payloads can fully exploit the great potential of these new capabilities for exciting new science and application missions

    Hydrogen Re-Embrittlement of Aerospace grade High Strength Steels

    Get PDF
    Hydrogen Re-Embrittlement on anodically coated high strength steels is a relevant risk for aerospace structures due to the possibility of hydrogen uptake during the operative life of the components. AISI 4340 and Maraging 250 unnotched tensile specimens were subjected to SSRT in order to evaluate the influence of test environment on time to failure. Fracture surfaces were examined by SEM analysis to evaluate the degree of embrittlement and to correlate it with hydrogen diffusivity of the tested steels

    Hydrogen Re-embrittlement of Aerospace Grade High Strength Steels

    Get PDF
    Hydrogen Re-Embrittlement on anodically coated high strength steels is a relevant risk for aerospace structures due to the possibility of hydrogen uptake during the operative life of the components. AISI 4340 and Maraging 250 unnotched tensile specimens were subjected to SSRT in order to evaluate the influence of test environment on time to failure. Fracture surfaces were examined by SEM analysis to evaluate the degree of embrittlement and to correlate it with hydrogen diffusivity of the tested steels

    The activity of Main Belt comets

    Full text link
    Main Belt comets represent a recently discovered class of objects. They are quite intriguing because, while having a Tisserand invariant value higher than 3, are showing cometary activity. We study the activity of the Main Belt comets making the assumption that they are icy-bodies and that the activity has been triggered by an impact. We determine the characteristics of this activity and if the nowadays impact rate in the Main Asteroid Belt is compatible with the hypothesis of an activity triggered by a recent impact. Due to the fact that the Main Belt comets can be considered as a kind of comets, we apply a thermal evolution model developed for icy bodies in order to simulate their activity. We also apply a model to derive the impact rate, with respect to the size of the impactor, in the Main Belt. We demonstrate that a stable activity can result from a recent impact, able to expose ice-rich layers, and that the impact rate in the Main Belt is compatible with this explanation.Comment: 9 pages, 7 figure

    Electroproduction of nucleon resonances

    Full text link
    The unitary isobar model MAID has been extended and used for a partial wave analysis of pion photo- and electroproduction in the resonance region W < 2 GeV. Older data from the world data base and more recent experimental results from Mainz, Bates, Bonn and JLab for Q^2 up to 4.0 (GeV/c)^2 have been analyzed and the Q^2 dependence of the helicity amplitudes have been extracted for a series of four star resonances. We compare single-Q^2 analyses with a superglobal fit in a new parametrization of Maid2003 together with predictions of the hypercentral constituent quark model. As a result we find that the helicity amplitudes and transition form factors of constituent quark models should be compared with the analysis of bare resonances, where the pion cloud contributions have been subtracted.Comment: 6 pages Latex including 5 figures, Invited talk at ICTP 4th International Conference on Perspectives in Hadronic Physics, Trieste, Italy, 12-16 May 200

    Small crater populations on Vesta

    Full text link
    The NASA Dawn mission has extensively examined the surface of asteroid Vesta, the second most massive body in the main belt. The high quality of the gathered data provides us with an unique opportunity to determine the surface and internal properties of one of the most important and intriguing main belt asteroids (MBAs). In this paper, we focus on the size frequency distributions (SFDs) of sub-kilometer impact craters observed at high spatial resolution on several selected young terrains on Vesta. These small crater populations offer an excellent opportunity to determine the nature of their asteroidal precursors (namely MBAs) at sizes that are not directly observable from ground-based telescopes (i.e., below ~100 m diameter). Moreover, unlike many other MBA surfaces observed by spacecraft thus far, the young terrains examined had crater spatial densities that were far from empirical saturation. Overall, we find that the cumulative power-law index (slope) of small crater SFDs on Vesta is fairly consistent with predictions derived from current collisional and dynamical models down to a projectile size of ~10 m diameter (Bottke et al., 2005a,b). The shape of the impactor SFD for small projectile sizes does not appear to have changed over the last several billions of years, and an argument can be made that the absolute number of small MBAs has remained roughly constant (within a factor of 2) over the same time period. The apparent steady state nature of the main belt population potentially provides us with a set of intriguing constraints that can be used to glean insights into the physical evolution of individual MBAs as well as the main belt as an ensemble.Comment: Accepted by PSS, to appear on Vesta cratering special issu
    corecore