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A B S T R A C T

Reacting faster to the behaviour of others provides evolutionary advantages. Reacting to unpredictable events
takes hundreds of milliseconds. Understanding where and how the brain represents what actions are likely to
follow one another is, therefore, important. Everyday actions occur in predictable sequences, yet neuroscientists
focus on how brains respond to unexpected, individual motor acts. Using fMRI, we show the brain encodes
sequence-related information in the motor system. Using EEG, we show visual responses are faster and smaller for
predictable sequences. We hope this paradigm encourages the field to shift its focus from single acts to motor
sequences. It sheds light on how we adapt to the actions of others and suggests that the motor system may
implement perceptual predictive coding.
1. Introduction

The capacity to perceive and predict actions performed by others is
fundamental to proper social interactions. Over the past few decades,
much research attention has been devoted to identifying the neural
mechanisms that underlie the processing of simple acts such as grasping,
reaching, breaking, and performing simple gestures. Electrophysiological
work on non-human primates has identified that some of the neurons
active while participants perform simple acts are also active when
observing (or hearing) similar acts performed by others. These neurons,
called ‘mirror neurons’, were originally identified in ventral premotor
region F5 and in the rostral inferior parietal region PF/PFG (Gallese et al.,
1996; Umilt�a et al., 2001; Kohler et al., 2002; Keysers et al., 2003; Fogassi
et al., 2005). Later studies have described neurons with such mirroring
properties in (a) somatosensory cortices (particularly in SII and adjacent
sectors of SI Hihara et al., 2015), (b) the dorsal premotor cortex (Cisek
and Kalaska, 2004; Tkach et al., 2007), and (c) to a lesser extent, the
primary motor cortex (Dushanova and Donoghue, 2010; Kraskov et al.,
2014; Vigneswaran et al., 2013). Our current estimate of the mirror
neuron system – i.e. the network of brain regions with neurons rendered
active during both the observation and performance of specific actions –
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comprises all these regions. Whether suchmirror neurons exist elsewhere
in the primate brain remains unanswered, as systematic experiments to
examine the issue remain to be carried out. The firing of individual
mirror neurons contains information that will permit accurate classifi-
cation of the acts performed by others (C Keysers et al., 2003). This work
has led to the idea that isolated observed or heard acts are processed, at
least in part, by recruiting somatosensory-motor representations of the
monkey's own actions (Gallese et al., 2004; Rizzolatti and Sinigaglia,
2010; Umilt�a et al., 2001). A large number of neuroimaging studies in
humans have identified an action observation network triggered by the
observation of such simple acts (for ALE meta-analyses of these studies
see for instance Caspers et al., 2010; Grosbras et al., 2012; Molenberghs
et al., 2012). A smaller number of studies have tested the same partici-
pants during both their observation and execution of manual actions.
These studies identified a network of voxels involved in both conditions
(e.g. Arnstein et al., 2011; Buccino et al., 2004; Dinstein et al., 2007;
Filimon et al., 2007; Gazzola and Keysers, 2009; Gr�ezes et al., 2003;
Simos et al., 2017; Valchev et al., 2016). We shall henceforth refer to this
network as the Action Observation-Execution Network (AOEN). The
AOEN network includes (a) the presumed human homologue of the brain
areas in which mirror neurons have been found in monkeys (vPM, dPM,
, 1105BA Amsterdam, the Netherlands.
. Keysers).
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Table 1
List of sequences used as stimuli with total duration in seconds and number of
motor acts.

Action Seconds Acts

1 Inflating and tying a balloon. 51 27
2 Making a paper boat. 94 32
3 Preparing bread with butter and jam. 79 40
4 Sewing a button. 66 42
5 Writing a gift card. 83 39
6 Rolling a cigarette. 72 30
7 Arranging flowers in a vase. 82 39
8 Framing a picture. 112 39
9 Cleaning spectacles. 69 38
10 Cleaning a laptop screen. 46 28
11 Sending a letter. 42 34
12 Replacing battery in a torch. 51 27
13 Applying nail polish. 49 23
14 Squeezing oranges. 62 40
15 Sharpening a pencil. 83 44
16 Replacing a pillow cover. 44 35
17 Removing nail polish. 64 32
18 Preparing a sandwich. 77 27
19 Toasting bread. 65 30
20 Folding a shirt. 38 20
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SI, SII, PF/PFG) and (b) a number of regions that have not yet been
systematically explored for the presence of mirror neurons in monkeys
(in particular, the cerebellum, SPL, SMA and regions of the visual cortex
such as V5 and EBA). Pattern classification analyses have confirmed that
the pattern of brain activity in premotor, inferior parietal and somato-
sensory cortices does contain information that could help the organism
perceive which motor act someone else performed (Etzel et al., 2008;
Oosterhof et al., 2010). Disturbing activity in the somatosensory-motor
nodes of this AOEN (SI, IPL, PM) leads to deficits in the processing of
observed actions (for recent reviews see Avenanti et al., 2013; Keysers
et al., 2018; Urgesi et al., 2014). Together, these findings suggest that
humans also recruit brain regions associated with the planning, execu-
tion and somatosensation of their own actions in their perception and
interpretation of the actions of others.

In contrast, we know very little about where and how the brain
represents knowledge and expectations about sequences of acts, e.g.
preparing breakfast (Grafton and Hamilton, 2007; Kilner and Frith, 2008;
Thioux et al., 2008). Intelligent participation in coherent action se-
quences inevitably requires information that goes beyond the sum of the
knowledge about the individual acts that go into their making. Repre-
senting a sequence of acts entails representing the order in which the acts
were performed. Such ordinal information is critical to predicting actions
that people are likely to perform as the follow up to a previous step. This
prediction, in turn, is crucial to an intelligent agent's proactive planning
of reactions to the that follow up. In this paper, we shall present the
experimental evidence we have gathered about both the areas and the
manner in which this knowledge is represented in the brain.

To explore where the brain encodes sequence level information, we
localized regions responding differently to acts in a logical sequence (e.g.
grasping a bun, cutting the bun, buttering the bun) and in a random
sequence. Some scientists (e.g. Brass et al., 2007; Caramazza et al., 2014;
Kilner and Frith, 2008) have argued that such higher-level information is
more likely to be represented in the Theory of Mind (ToM) network than
in the motor system. Systematic reviews of studies looking at reasoning
about the mental states of others have revealed a core network composed
of the medial prefrontal and rTPJ that are consistently activated when-
ever participants are reasoning about mental states of others irrespective
of the task- and stimulus format (Mar, 2011; Schurz et al., 2014). There
are some, including us, who suggest that the AOEN could represent
sequence-level information. We base our suggestion on insights from
experiments on monkeys showing that mirror neurons in the motor
system are sensitive to expectations about upcoming actions (Fogassi
et al., 2005; Umilt�a et al., 2001). This is also in line with observations that
premotor cortices do represent sequences of stimuli in other domains
(Fiebach and Schubotz, 2006; Schubotz and von Cramon, 2001; Schubotz
et al., 2004). When we act, we can see our own actions unfold in our
perceptual space, so we can surmise that Hebbian learning in the syn-
apses mutually connecting our visual and motor systems would encode
the transitional probabilities across individual motor acts, and thereby
enable our AOEN to represent sequence-level information and anticipa-
tion in a predictive coding framework (Keysers and Gazzola, 2014).
Indeed the possibility that the AOEN is involved in such prediction is
corroborated by recent experiments that show that virtual lesions to
premotor cortices (Avenanti et al., 2017; Makris and Urgesi, 2015) or
neurological lesions to the premotor, somatosensory or inferior parietal
cortices (de Wit and Buxbaum, 2017) interferes with our ability to precit
actions in a sequence.

Lerner et al. (2011) suggests a powerful experimental method to
investigate this issue. They took a story and presented it to participants
once in its intact form, or then after cutting it at the spaces between
words and randomizing the order of the words. If brain regions are
sensitive only to word-level information, randomizing the order of the
words in the story should not alter brain activity. The hypothesis was
that, if brain regions respond to higher, sentence- or paragraph-level
information, then, randomizing the order of the words should destroy
that information and reduce the efficacy of brain activity. Brain activity
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was then analysed using inter-subject correlations (ISC) (Hasson et al.,
2012). ISC maps information about a stimulus in the brain in a model free
fashion based on a simple logic. If a voxel has no information about a
stimulus, its activity reflects spontaneous activity and will not be corre-
lated in time with that of other participants exposed to the same stimulus.
If a voxel's activity is strictly determined by a stimulus, activity across
witnesses of the stimulus will be similar, and the inter-subject correlation
will be significant. If so, the higher the temporal correlation between
subjects with respect to a voxel, the more evidencewe have of that voxel's
ability to contain information about the stimulus. By comparing ISC of
the intact and scrambled sentences, Lerner et al. identified brain regions
that show evidence of significant additional information/correlation
when sentence level information was preserved, i.e., when the sentences
were presented intact, than when sentence level information was
degraded, i.e., when the words were presented in a random order.

Here we adapted this approach to localize brain regions containing
action sequence-level information. We recorded movies of routine ac-
tions lasting approximately 1min (Table 1). We then measured brain
activity using fMRI in 22 participants while they viewed intact movies
that contain sequence- and act-level information. Then we presented the
same movies disjointed at the points of transition between acts, and with
the order of the acts randomized. We also measured brain activity while
participants viewed these scrambled movies containing the same act-
level information, but with perturbed sequence-level information
(Fig. 1). We then localized brain regions that had significantly different
ISC values for the intact and scrambled movies to identify regions
involved in processing sequence-level information. It is important to note
that not finding a region in this contrast does not means that region has
no role in encoding sequence-level information. In addition to the usual
limitations regarding negative findings, this is because ISC identifies
activations occurring at the same location and time across participants,
and thus focuses on stimulus-locked processes (Hasson et al., 2012;
Stephens et al., 2013). If different participants encode the sequence of the
overall actions (e.g. making breakfast) at different points along the
sequence, this would evade the ISC analysis, and a region could then be
involved in encoding this form of sequence-level information without
showing increased ISC. We will therefore supplement ISC analyses with
analyses exploring average activity levels across the sequences to shed
light on activity that is consistent in location across individuals but not in
timing. We generated a simple excel sheet to illustrate the difference
between ISC and a traditional block-design GLM (bGLM, see Supple-
mentary Materials – ISC bGLM differences). The ISC detects
stimulus-locked fluctuations of activity that occur at the same time for all



Fig. 1. Stimulus used in the study. A movie of a familiar action (e.g. preparing
a bun for breakfast with butter and jam) is shown in an intact (left) and
scrambled (right) version. Both versions contain the exact same individual acts
(slicing the bun, spreading the jam, etc.), but in a different order. Note the
45�camera angle change between every two consecutive acts in both intact and
scrambled sequences. This was done to ensure that the inevitable visual tran-
sients created by rearranging a sequence in the scrambled condition are also
present in the intact condition, and to remove low level confounds.
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participants – even if this activity does not lead to a net increase of ac-
tivity. GLM, in contrast, detects net increases in activity independently of
whether the timing of the increase is consistent across participants.
Importantly, if a given region shows significantly more ISC for the intact
version than for the scrambled version, we are justified in taking it as
evidence that this region represents information about what has been
679
perturbed by the scrambling: the natural order of actions in the observed
sequence.

Our next aim is to shed light on how the brain encodes sequence-level
information. Anatomically, we know that the higher regions of the visual
system in the temporal lobe are reciprocally connected with regions of
the posterior inferior parietal lobe which in turn are connected to dorsal
and ventral premotor and somatosensory brain regions (Disbrow et al.,
2003; Lewis and Van Essen, 2000; Maunsell and van Essen, 1983;
Nelissen et al., 2011; Pons and Kaas, 1986; Rozzi et al., 2006) (for re-
views see Keysers et al., 2010; Keysers and Perrett, 2004). We can
distinguish three families of models of the functional architecture of
action observation based on how these models conceive of the feed-back
connections back from parietal regions to the visual cortices (Fig. 2). The
first family highlights the role of feed-forward connections in triggering
motor programs that match visual input (Rizzolatti and Sinigaglia, 2010)
without ascribing any specific function to the feed-back connections. The
second family aims at explaining imitation and acknowledges the role of
feed-back connections to visual regions, and assumes that these feedback
connections provide excitatory efference copies that activate matching
visual representations in a way akin to mental imagery (Iacoboni et al.,
2001). On the basis of considerations derived from Hebbian learning and
the observation that single neurons in the monkey STS are inhibited
during action execution, the third family proposes that neurons in the
visual cortex are inhibited by parietal predictions via inhibitory feed-back
connections (Keysers and Gazzola, 2014; Keysers and Perrett, 2004) in a
way akin to predictive coding models derived from a Bayesian brain
perspective (Kilner et al., 2007). As inhibitory feedback cancels pre-
dictions from the visual response, the feed-forward visual information in
this model becomes a representation of prediction errors rather than of
what is seen in the outside world. At this point, we shall leverage the fact
that these theories predict different neural activity patterns in the visual
cortex as part of our strategy to shed light on the computational mech-
anisms involved in action observation. Purely feed-forward accounts
conceive of the visual cortex only as an input stage to action perception
and therefore would not be able to predict early visual areas to respond
differentially to acts in their proper order and to those out of their order.
Excitatory efference-copy models would suggest that the response to
predicted individual acts is amplified in early visual regions by excitatory
efference copies, so that early neuronal visual responses to intact se-
quences should be larger than response to actions in scambled order. In
contrast, inhibitory predictive coding models propose that early visual
cortex essentially encodes prediction errors, and that neural activity in
early visual responses should be the strongest in the case of individual
acts embedded in scrambled sequences. As for the parietal node of the
system, it is difficult to obtain clear predictions from the first two families
of models. However, the third type of model (predictive coding) predicts
that the response to acts in intact sequence should be hundreds of mil-
liseconds faster than that to acts in scrambled sequences. This is because
sensorimotor delays during re-afference are thought to wire the system so
that a given action arouses expectations of the following action by
priming its sensorimotor representations in the parietal cortex (Keysers
and Gazzola, 2014; Keysers and Perrett, 2004). Because of its low tem-
poral resolution fMRI is ill suited to resolve the individual motor acts
embedded in our sequences or the sub-second shifts in response timing
predicted by our models. Accordingly, we opted for high-density EEG to
compare the evoked visual response to individual motor acts in the intact
version with the responses to the scrambled version. Certain situations
may complicate the predictions made by these models. For instance
excitatory efference copies may down-regulate redundant sensory input,
and thus minimize the expected increase of activity in early visual
cortices. At the same time, inhibitory efference copies may for instance
reduce neural activity for expected stimuli in pyramidal neurons (as
measured with EEG) but fail to decrease the BOLD signal locally because
of the metabolic costs of inhibition (but see Mangia et al., 2009).



Fig. 2. Predictions of different action-
observation models. Feed-forward models
(top) emphasize feed-forward connections from
visual to parietal regions and do not ascribe a
function to feed-back connections. They do not
make particular predictions on the timing of pa-
rietal activations for intact and scrambled se-
quences (middle column) but predict that visual
cortices (right-most column) respond similarly to
a particular observed act embedded in the intact
and the scrambled sequence. Efference-copy
models (middle row) originating from imitation
models suggest that feed-back connections are
important and excitatory, and hence that in intact
sequences, correct predictions in the parietal lobe
should heighten visual responses compared to
those in scrambled sequences. However, it is un-
clear what predictions they make regarding the
timing of responses in the parietal lobe. Finally,
predictive coding theories suggest that in intact
sequences, the parietal lobe should show predic-
tive responses (that thus have latencies shorter
than in scrambled sequences) and inhibit re-
sponses in the visual cortex (bottom row).
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2. Materials and methods

2.1. Participants

All participants were right handed as per the Edinburgh Handedness
Inventory (Oldfield, 1971), had normal or corrected-to-normal vision
and no history of neurological or psychiatric disorder. Informed consent
was provided by each participant according to the procedure approved
by the ethics review board of the University of Amsterdam
(2013-EXT-2847). For the fMRI experiments, 22 healthy Caucasian par-
ticipants took part (11 male, 11 female, mean age 23.3� 3.46sd). None
of the participants were excluded from the fMRI dataset. For the EEG
experiment, a total of 24 participants were tested. Of these, 10 had also
taken part in the fMRI experiment (5 male). The other 12 fMRI partici-
pants could unfortunately not be traced back when we decided to
perform the follow up EEG experiment, and an additional 14 participants
(7 male, 7 female, mean 25.07� 6.53sd) were recruited for the EEG
experiment alone. Three of these additional EEG participants were
excluded from the analyses. For two of these subjects, we found that all
the channels were equally corrupted by motion artefacts and this was
present in a large number of trials. This became evident by using Field-
Trip's FT_REJECTVISUAL and FT_DATABROWSER functions which are
made available for helping with manual rejections of artefacts. The third
was rejected because the impedances of the electrodes were unusually
high, and the data noisy. This resulted in a final sample of 21 EEG par-
ticipants (12 females, age: 26.76� 5.86sd).
2.2. Stimuli & experimental procedure

Twenty movies containing different daily actions (e.g. preparing
sandwiches with butter and jam; see Table 1 for the full list) were
recorded simultaneously by two video cameras (Sony MC50, 29 frames/
s) at an angle of 45�. The videos were edited using ADOBE Premier Pro
CS5 running on Windows. Each movie was subdivided into shots con-
taining one meaningful motor act each (e.g. taking bread, opening the
butter dish, scooping butter with knife, etc.). This was done on recordings
from both camera angles. These motor acts (mean duration 2s� standard
deviation 1s) were then assembled to build two types of stimuli (Fig. 1).
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For the intact (I) presentation, the natural temporal sequence in which the
acts were recorded was maintained, but a camera angle change was
introduced between every two consecutive acts by alternate sampling
from the recordings of the two cameras. In the scrambled (S) versions, the
acts remained the same, but the order of the acts was randomly rear-
ranged, and a camera angle change was introduced between every two
consecutive acts. Camera angle changes were imposed at each act tran-
sition in both types of movies to compensate for the visual transients that
would otherwise be present only in the scrambled movies.

During both the fMRI and EEG experiments, participants had to watch
all the 20 movies, which were presented using the Presentation software
(Neurobehavioral Systems, Inc., Albany, CA, USA) in four different ses-
sions each containing 5 intact and 5 scrambled examples, shown in a
pseudo-randomized fashion, with an inter-movie interval between 8 and
12 s. No behavioural response was required during the four sessions, but
participants were to carefully observe the videos. To facilitate the inte-
gration of the results in the two experiments, we adjusted the EEG setup
so as to create a situation that resembles that in the fMRI setup. Specif-
ically, the illumination of the room was dimmed down to resemble the
luminance of the scanner room and the screen was placed at a distance of
120 centimetres from the participant to achieve a similar angular stim-
ulus size.

In order to minimize the repetition effect of seeing the same movies
twice, for the ten participants that took part in both the fMRI and EEG
experiment, a temporal interval of 6 months was imposed between the
two experiments. Besides, to ensure that participants paid attention to
the movies in both the fMRI and EEG experiments, they were told that
they would be required to answer three questions (that the experimenter
would pick out of 22 prepared questions) to test their comprehension of
the stimuli (e.g., Did you see roses or tulips during the movie clip? What
flavour was the jam? How many batteries were used in the torch?).
Comparing the number of correct responses between the fMRI and EEG
experiment suggests that participants were similarly attentive: a tradi-
tional independent sample t-test revealed no evidence against the null
hypothesis (t(44)¼ -0.024, p¼ 0.98) and a Bayesian independent sample
t-test as implemented in JASP (https://jasp-stats.org) with default set-
tings revealed evidence for the null hypothesis of equal performance
(BF10¼ 0.29, all BF10< 1/3 are considered evidence for the null).

https://jasp-stats.org
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2.3. fMRI acquisition

Data were acquired on a 3T Philips Achieva scanner with a 32-chan-
nel head coil. Functional images were acquired with simultaneous multi-
slice excitation equal to 3, (TR¼ 721ms, TE¼ 28ms), 39 axial slices of
3 mm with no gap and FOV of 240� 240� 39mm. Images were recon-
structed offline by Recon (Gyro Tools, Switzerland, http://www.
gyrotools.com), after which the FOV was 120� 78� 240mm. For each
participant a T1 weighted image of 1� 1x1 mm voxels was acquired.
Stimuli were projected on an LCD screen and viewed through a mirror
attached to the head coil.

The entire fMRI data can be found at https://doi.org/10.5281/
zenodo.1285837.

2.4. fMRI inter-subject correlation analyses

Data were pre-processed using SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) and custom-built MATLAB 9.8 (Mathworks Inc.,
Sherborn, MA) routines. The raw voxel time courses were bandpass
filtered between 0.01 and 0.2 Hz, as this is known to be the optimal band
to perform ISC (Kauppi et al., 2010). At this stage the BOLD time courses
corresponding to all the intact and scrambled movies presented to the
subject were extracted, de-meaned (voxel- and movie-wise), and
concatenated in such a way that the concatenated order would remain
invariant across participants irrespective of the pseudo-random order in
which they saw the movies. Before concatenating to a single 4D NIFTI
file, we trimmed three TRs from the beginning and the end of each movie
epoch to remove the influence of non-specific BOLD transients (Hasson
et al., 2004). Each subject's 4D file was then realigned to the mean image
of the time course. The T1 weighted anatomical image was then
co-registered to the mean functional image and segmented. All EPI im-
ages were normalized at 2� 2x2mm resolution to the template MNI
brain using the forward deformation tensor derived from the segmenta-
tion of the T1 image of that subject. The normalized images were then
smoothed with an 8� 8x8 mm (FWHM) Gaussian filter.

Inter-subject correlations were calculated using the ISC toolbox
(Kauppi et al., 2014) and in-house MATLAB routines and SPM12.

After the pre-processing step for ISC, we had two 3D time courses per
subject, one for intact and the other for scrambled movies. For the
subject-level ISC analysis, the time course of a given voxel in subject iwas
correlated with the average time course of all other subjects of that
corresponding voxel. This was repeated for every voxel and with all
subjects, resulting in a whole-brain map of correlation values per subject
(Hasson et al., 2010; Kauppi et al., 2014).

These correlation maps were then used in a second-level random ef-
fects analysis in SPM: a one-sample t-test for I> 0 (H0: I� 0, i.e. in each
voxel, the distribution of the ISC value across the 22 participants was
compared against the null hypothesis of an ISCIntact�0) and S> 0 (idem
for H0:ISCScrambled�0) and a paired sample t-test comparing I and S
(H0:ISCIntact¼ ISCScrambled) was performed at every voxel. To determine
what findings are significant, we first thresholded all contrasts at
p< 0.001 uncorrected with a minimum cluster size of k¼ 20 voxels. This
combination ensured that all results in the I vs S contrast survive a
cluster-size family-wise error correction at pfwe<0.05 (see the p-values in
the results table), and most in the I> 0 or S> 0 contrasts. Cluster size-
correction, however, does not ensure that one can interpret the loca-
tion of individual voxels within the cluster. To ensure that no more than
5% of individual voxels are false positives, we determined the critical t-
value that ensures a voxel-wise false discovery rate of q< 0.05. Using a
voxel-wise false discovery correction for multiple comparison with
q< 0.05 and cluster-size threshold set at k> 20 voxels, t-values greater
than 2.56 and 2.58 for I> 0 and S> 0 respectively and 3.92 for I vs. S are
significant. Often, this tq<0.05 is less stringent then the critical t for
punc<0.001 (tp<0.001¼ 3.52), and we then simply used the tp<0.001
threshold. If the q< 0.05 was more stringent (as in the I vs S contrast), we
then used the more stringent q< 0.05 t value (tq<0.05¼ 3.92). In short,
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our threshold was always t¼max (tp<0.001, tq<0.05).
The ISC revealed that intact movies generated more synchronized

activity across participants than that in the case of scrambled movies in 8
clusters (Fig. 3 ISC I–S). To determine whether these regions clustered in
a smaller number of networks, we transformed these 8 clusters into re-
gions of interest for signal extraction. Because the right parietal cluster
was very large and spanned several cyto-architectonic regions at
q< 0.05, we split this cluster into several sub-clusters by marginally
increasing the threshold from t> 3.92 to t> 4.1, which split this large
cluster into three clusters (ROIs 7,9 and 10 in Figure, 4). All other ROIs
were defined at t> 3.92 corresponding to qFDR; k¼20 < 0.05, Fig. 4a and
Table 2. We used Marsbar (http://marsbar.sourceforge.net/) to extract
the time-course of each voxel within each ROI. We then calculated the
Eigen-time-course in each of them. The Eigen time-course from each of
these ROIs was then averaged over all participants to focus on stimulus
driven activity (Simony et al., 2016) and to form a cross-correlation
matrix between all the ROIs (see Supplementary Figure S1). Two clus-
ters of activation were excluded from this ROI analysis: (1) the cere-
bellum, because the cluster was small (23 voxels) and located at the
margin between the cerebellum and ventral visual cortex, making the
interpretation as cerebellar or cortical difficult; (2) area TE3, because it
was at the outermost rim of the cortex with most voxels outside of the
gray-matter mask. We used the first Eigen-time-course of each of the
other ROIs, despite the ROIs being relatively large, because it suffices to
capture the vast majority of the variance in the signal (average¼ 88%,
range¼ [78%–98%]). This correlation matrix was used as input to a
canonical multi-dimensional scaling algorithm that positioned the ROIs on a
2D map according to the pattern of correlations between a particular ROI
and others, with ROIs having similar patterns mapped closer to each
other. A k-means clustering algorithm was then used to determine the
number and membership of clusters in this data. To determine the
number of clusters, given the relatively low number of data-points, we
used the Silhouette procedure reported by Kaufman and Rousseeuw
(1990). The procedure involves computing the k-means with k being set
to 2,3,4 and 5 clusters (more clusters seemed inappropriate for 10
data-points). For each value of k we calculated the Silhouette value for
each data point (a large value implies that the point is well within a
cluster while low values reflect ambiguity). We repeated this procedure
using the concatenated Eigen-time-course of all participants rather than
the averaged Eigen-time-course. This led to the same classification in
three networks for all except one ROI, viz., ROI 4, in the dorsal premotor
cortex, and then switches from the blue to the red network.

This is likely to be due to the strong intrinsic connectivity between the
dorsal premotor cortex and the ROIs of the red network at rest (Smith
et al., 2009), which contaminates the cross-correlation matrix if aver-
aging across participants is not performed (Simony et al., 2016).

2.5. fMRI general linear model analyses (GLM)

The pre-processing pipeline for the GLM analyses began with tem-
poral filtering as in the case of the ISC. Subsequently the four different
sessions were slice time corrected and realigned. The T1 image was co-
registered to the mean EPI, and segmented. The EPI images were then
normalized using the forward deformation tensors derived from that
segmentation, written at a 2� 2x2mm resolution, and then smoothed
with an 8� 8x8 mm (FWHM) Gaussian filter.

In the first level analysis of the GLM, the five blocks of the intact and
five of the scrambled movies were modelled as two regressors-of-interest
in each of the sessions. Movement parameters estimated during
realignment were included as covariates of no interest in the analysis.
The regression coefficients were then used in second-level analysis in
SPM: a one sample t-test for I> 0 (H0: I� 0) and S> 0 (H0:S� 0) and a
paired sample t-test comparing I and S (H0:I––S) was performed at every
voxel. Thresholding was performed as for the ISC results: first we
imposed a punc<0.001 k¼ 20 threshold (t¼ 3.52), which again ensured
that most results survive a family-wise error correction for cluster size

http://www.gyrotools.com
http://www.gyrotools.com
https://doi.org/10.5281/zenodo.1285837
https://doi.org/10.5281/zenodo.1285837
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://marsbar.sourceforge.net/


Fig. 3. Regions with significant ISC (top panel) and bGLM (middle panel), and their overlap with the localizers. Each row of the top and middle panels
corresponds to the contrast indicated on the left and shows lateral and posterior renders and four axial slices of the average normalized gray-matter segment of the 22
participants. Cold/warm colours represent significant negative/positive t-values. Results are shown at p–values < 0.001 and cluster-size threshold of k¼ 20 (to impose
the same t> 3.52 threshold on all contrasts), but voxels not surviving a voxel wise false discovery rate (FDR) correction at q¼ 0.05 were excluded (inclusive masking
with in SPM). The bottom panel shows the results of the overlap between the ISC and bGLM analyses, and our AOEN and ToM networks. (a) Overlap across regions
showing more synchrony (ISC, red) or average activation (bGLM, blue) for intact movies and the AOEN (green). No overlap was found with the ToM network, which is
why this network is not shown here. (b) Overlap (yellow) between regions showing more average activation (bGLM, red) during the scrambled movies and the ToM
network (green), particularly in the TPJ. No overlap was found with the AOEN, which is why this network is not shown here. See Tables S1-S4, and Tables 2 and 4-6
for the corresponding MNI coordinate tables. The t-maps for ISC and gGLM can also be found in. nii format in the supplementary materials together with the average
anatomy of our participants.
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Fig. 4. ISC Networks. The Eigen-time courses in the 10 regions showing ISC I-S (a) were compared using a canonical multi-dimensional scaling algorithm (b), in which
regions with similar time courses are close to each other (see also Figure S1). A k-means clustering revealed that these regions can be summarized as 3 networks
(colours in b). These networks (colored in red, green and blue separately in panels d–e) have significant correlations between them (c). (g–i) shows the average activity
of these networks for each movie averaged over all participants (every row of the matrix corresponds to a movie) and the average across all movies (time course
beneath each matrix). The white spaces in the matrix and the region bounded by red-dashed lines on the time course are where the ISC does not exceed that of
randomized samples and is thus not significant. The ROI labels that have a star marked on top had significant co-activation with the motor-execution task (Sup-
plementary Methods S2).
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(see p-values in result tables). To interpret individual voxels, we also
imposed a q< 0.05 voxel-wise false discovery correction for multiple
comparison. This lead to a more permissive t-values of 2.81 and 2.77
respectively for I> 0 and S> 0, and we thus maintained the p< 0.001
threshold of t¼ 3.52 in those cases, and t¼ 3.87 for I vs. S, and we thus
used this more stringent t-value as a threshold for that contrast.

2.6. EEG data acquisition

EEG data were acquired with the actiCHamp (Brain products Gmbh
Brain Products GmbH, Gilching, Germany) amplifier system with active
electrodes. We recorded from a 128-electrode active array embedded in
an elastic cap (ActiCap International, Inc.) in accordance with the 10–20
International System. In addition to the scalp electrodes, an active elec-
trode was placed on the forehead (AFz, 25mm above the nasion), and
two electrodes on the left and right infraorbital rim to detect and clean
eye movement artefacts. Impedance of all electrodes was kept below
5 kΩ. The EEG signal was digitized at a sampling rate of 500Hz (16 bit
AD converter), and a hardware high-pass filter was applied at 0.15 Hz to
remove slow drifts.
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Triggers were recorded at every camera change (corresponding to the
transition between acts) during the movie. This was done by adding a
white square on the last and first frames of each act on the side of the
movie. An LED was then placed over the location of the square, and a
wooden black masking frame ensured that the square was invisible to the
participant. The output from the LED was then introduced as a digital
channel input in the EEG recording system.

2.7. EEG data analysis

EEG data were analysed and pre-processed using in-house MATLAB
(www.mathworks.com) routines and the FieldTrip analysis software in
MATLAB (Oostenveld et al., 2011). Eye-movement and ECG artefacts
were removed using the Independent Component Analysis (ICA) pro-
cedure; a spatio-temporal ICA provides several topographical plots of ICA
components, which are then manually selected for ECG and
eye-movement artefacts following the criteria recommended in the
FieldTrip manual (http://www.fieldtriptoolbox.org/example/use_
independent_component_analysis_ica_to_remove_eog_artifacts?s[]¼ica).
These components were removed and the remaining components

http://www.mathworks.com
http://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_eog_artifacts?s[]=ica
http://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_eog_artifacts?s[]=ica
http://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_eog_artifacts?s[]=ica


Table 2
ISC (I–S).
Regions with ISC Intact> Scrambled labelled using SPM Anatomy Toolbox. Results are shown, as for Fig. 3, using the most stringent threshold between the FDR
correction at q< 0.05 and the uncorrected at p< 0.001: max (tFDR¼ 3.93, tunc¼ 3.53) and k¼ 20. The first column of the table also indicates whether a particular cluster
survives family wise error correction at cluster level.
From left to right: the cluster size in number of voxels and FWE; the number of voxels falling in a cyto-architectonic area; the percentage of the cluster that falls in the
cyto-architectonic area; the activated hemisphere (L¼ left; R¼ right); the name of the cyto-architectonic area when available or the anatomical description; the per-
centage of the area that is activated by the cluster; the t values of the peaks associated with the cluster followed by their MNI coordinates in mm; the number of the ROIs
in Fig. 4 to which the cluster corresponds (the first cluster was split in 3 by increasing the threshold to t> 4.1).

Cluster size # Voxels in cyto % Cluster Hem Cyto or anatomical description % Area Peak Information # ROI

FWE T x y z Fig. 4

ISC(I> S), max (tFDR¼ 3.93, tunc¼ 3.53)¼ 3.93
2913 416.6 14.3 R Area PFt (IPL) 99.3 7, 9, 10
pFWE<0.000 393.2 13.5 R Area PF (IPL) 57.9 6.18 58 �36 48

252.6 8.7 R Area 2 38.6
204.6 7 R Area 5L (SPL) 27.7 7.22 16 �48 78
183.3 6.3 R Area 7 PC (SPL) 40.1
162.7 5.6 R Area 7A (SPL) 20.8 7.15 30 �60 68
138.9 4.8 R Area hIP2 (IPS) 65.5
125.9 4.3 R Area 1 17.8
117.3 4 R Area PFop (IPL) 51
117.1 4 R Area PFm (IPL) 16.5
114.2 3.9 R Area 44 18.9 5.91 62 8 26
87.3 3 R Area PFcm (IPL) 26.6 5.44 60 �34 32
55.6 1.9 R Area 3b 8.8 4.47 56 �10 22
17.4 0.6 R Area 4a 1.6
14.6 0.5 R Area hIP3 (IPS) 3.2
13.7 0.5 R Area 3a 6.8
2.8 0.1 R Area OP4 [PV] 0.9

1452 448.1 30.9 L Area PFt (IPL) 76.9 5
pFWE<0.000 257.6 17.7 L Area PF (IPL) 49.3 8.53 �66 �36 36

190.5 13.1 L Area PFop (IPL) 85.8 6.92 �68 �20 28
76.9 5.3 L Area OP4 [PV] 21.3
68.6 4.7 L Area 1 12.1
37 2.5 L Area OP1 [SII] 9.9
36.4 2.5 L Area 3b 6.5
16.5 1.1 L Area PFcm (IPL) 5.1
5.5 0.4 L Area 2 1

661 342.6 51.8 L Area 7A (SPL) 27.4 7.16 �18 �58 74 1
pFWE<0.000 193.9 29.3 L Area 5L (SPL) 27.9

31.4 4.7 L Area 7 PC (SPL) 18.4
21.4 3.2 L Area 1 3.8

306 R Middle Frontal Gyrus 5.87 46 48 10 8
pFWE<0.000

214 R Callosal white matter 4.53 8 �28 26
pFWE<0.000 L Callosal white matter 4.48 �8 �32 22

204 L Rolandic Operculum 5.71 �40 0 14 2
pFWE<0.000 L White matter 4.42 �32 �6 20

160 69.2 42.7 L Area PGa (IPL) 10.9 3
pFWE<0.000 13.8 8.6 L Area hIP3 (IPS) 3 4.81 �36 �62 34

5 3.1 L Area hIP1 (IPS) 1.4
2.8 1.7 L Area PGp (IPL) 0.3 5.59 �38 �76 50

96 4.9 5.1 L Area 1 0.9 4.77 �42 �18 64 4
pFWE<0.000 1.9 2 L Area 4a 0.2

1.4 1.4 L Area 3b 0.2

61 75.4 L TE 3 5.2 4.65 �68 �34 4
pFWE<0.000 L TE 3 4.53 �68 �28 2

50 29.4 58.8 R Area hOc2 [V2] 2.5 4.8 12 �82 �6 6
pFWE<0.000 18.2 36.4 R Area hOc3v [V3v]

2 4 R Area hOc1 [V1]

23 6.6 28.8 R Lobule V (hem) 0.7 4.16 2 �56 �20
pFWE<0.000 6.2 26.9 L Lobule IIV 1.1

2.4 10.3 L Lobule V 0.3
2.2 9.6 R Lobule VII 0.4
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back-projected to the original space to obtain the “cleaned” EEG signal.
Across the runs, we rejected 5 components for 11 subjects, 6 components
for 5 subjects, 7 components for 3 subjects, and 8 components for 3
subjects.
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Since, the task did not involve the generation of deliberate motor
responses, we found almost no muscle artefacts in our data. Notch filters
of 1 Hz centred on 50Hz and its harmonics were used to remove the
generic electrical cycle frequencies.
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The Event-related potentials (ERPs) were calculated around each
camera change marking the beginning of a new act. Each trial was
defined over a window 500ms before and 1000ms after the camera
change. We therefore had 1292 trials in total including both the scram-
bled and the intact movies. All trials were then averaged within condi-
tion. Because the movies are continuous, the 500ms prior to a camera
change is not a traditional baseline, but is the end of the previous act.
Regarding the period after the camera change, 98% of the acts had du-
rations longer than 650ms. Accordingly, we focus our analyses on the
first 650ms of this epoch, which is largely unperturbed by camera
changes of subsequent acts.

To determine the time points on every channel for which the ERPs
from the two conditions differed significantly, we used a standard
cluster-based max-sum permutation test following Maris and Oostenveld
(2007) as implemented in FieldTrip while addressing multiple compar-
ison issues (750 time points x 128 channels). For every channel and
time-point the experimental conditions were compared by means of a
t-test (with n ¼ number of participants). All samples (channel-time pair)
whose t-values are below a t-threshold corresponding to the uncorrected
p < 0.05 cluster-forming threshold are set to a value of zero. For all pairs
exceeding this threshold, the value is first set to be the sum of its own
t-value and those of the neighbouring channels, integrated over a time
period extending from �25 ms to þ25 ms. Then in a second step, the
value is set to the maximum of the sum values across these same
spatio-temporal neighbours.

Once the max-sum statistic is calculated, we need to determine its
likelihood under the null hypothesis using a Monte Carlo method. Trials
of the different experimental conditions (intact and scrambled) are
conducted in a single set. As many trials from this combined data set as
there were subjects in condition 1 are randomly drawn and placed into
“pseudo-subset 1”. The remaining trials are placed in pseudo-subset 2.
The test statistic (max-sum) is calculated for this random partition. The
procedure for random partition and test statistics is repeated 5000 times
and a histogram of the test statistic is constructed. We calculate the
proportion of random partitions that result in a larger test statistic than
the observed one. This proportion is the Monte Carlo significance prob-
ability, which is also our p-value.

If this p-value for a particular time-channel pair is smaller than 0.05
we conclude that the data in the two experimental conditions are
significantly different at that channel and time.

For testing the significance of time-invariant parameters, the same
cluster approach was used, except that the max-sum was sum applied
only across neighbouring electrodes.

2.8. EEG source reconstruction

To capture the distributed representation of the underlying neuronal
activity that resulted in the sensor-level measurements of brain activity,
we performed source reconstruction using the minimum-norm estima-
tion (MNE) method (Dale et al., 2000). MNE is an approach favoured for
evoked responses and for tracking widespread activity over time. It in-
volves solving a distributed inverse solution that discretizes the source
space into locations in the brain volume using a number of current di-
poles. It then estimates the amplitude of all modelled sources simulta-
neously to recover a source distribution whilst minimizing the overall
source energy.

As part of the source reconstruction, we used an MNI template to
create two geometric objects, viz., the volume conduction model and the
source model. The volume conduction model determines the physics of
the propagation of electrical activity through the head, which in turn
depends on the conductivity of the various tissues between the source
and the sensor. The source space, which will be populated with current
dipoles, is the cortical sheet extracted from the anatomical image using a
combination of FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) and
MNE Suite (http://martinos.org/mne/stable/index.html). The volume
conduction and source models are then used to determine the lead fields
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(from source to sensor space) using OPENMEEG (http://openmeeg.
github.io/). The FieldTrip EEG analysis package was used to wrap the
above packages along with helper functions to construct the pipeline for
source reconstruction. Noise-covariance is calculated using a time-locked
analysis over the sensor space. The lead fields along with the noise-
covariance was used to reconstruct the source-level activity at every
time-step.

The ERPs of the two conditions (intact and scrambled) were con-
trasted to determine the time instances during which they differed
significantly. Source reconstruction was performed at these time-points
to reveal the source of the brain activity on the cortex.

2.9. EEG mu-suppression

To assess whether mu suppression was stronger over central elec-
trodes, we performed a time-frequency decomposition of the EEG data
from C3, C4, and Cz around each camera change. This was done for the
interval �0.45–0.85s relative to each camera change from frequencies
ranging from 2Hz to 40Hz in steps of 2 Hz using FieldTrip's function
FT_FREQANALYSIS, specifically calculating the time-frequency decom-
position using the MTMCOLV method, which is a multi-taper time-fre-
quency transformation based on multiplication in the frequency domain
using discrete prolate spheroidal sequences (Slepian sequences) as ta-
pers. The power at each moment and frequency was then averaged over
all camera changes of the intact movies, and separately for all camera
changes of the scrambled movies, to generate a single time-frequency
decomposition pattern per participant and condition. Dividing the
power of the intact by the scrambled decomposition yields a power ratio
that should be below 1 if intact movies lead to more mu-suppression
(hence less power) than scrambled movies. We then tested this ratio
using a one-tailed t-test (df¼ 22-1) separately for each time point and
frequency. To correct for multiple comparisons, we used the fdr_bh
routine in MATLAB, with q¼ 0.05. To test for effects that do not vary
over time, we also averaged the power over the time window, generating
a single power-spectrum per participant and condition, and compared the
I/S ratio against 1 (using a one-tailed t-test, df¼ 22-1) for each fre-
quency, using an FDR correction at q< 0.05.

2.10. EEG coherence analyses

To assess whether visual and parietal regions alter their connectivity
in intact vs scrambled conditions, we calculated the coherence of the EEG
signal between early visual cortices and the supramarginal parietal re-
gion, which the ISC analysis had revealed. We used FieldTrip to calculate
the coherence between six ROIs. These ROIs are, 'V1V2V3_Left',
'V1V2V3_Right', 'V5_Left', 'V5_Right', 'LSupraMG' and 'RSupraMG'. To
define the V1V2V3 ROIs, we extracted a binary image of these joined
anatomical regions in MNI space using the anatomy toolbox. For V5 we
used the same approach. For the supramarginal ROI (‘SupraMG’), we
used ROI 5 and 9 in Fig. 4E. These volume masks were mapped to the
source space (nodes in the tessellation of the brain). Time courses at these
source locations were reconstructed using a beamformer following the
LCMV method used in FieldTrip. Sources belonging to the same mask
were then averaged to obtain a mean time course per ROI and participant
in the source space. These time courses were then analysed to obtain
coherence spectra between the signals of pairs of ROIs. Five 200 ms time-
windows were analysed in the range from �200 to þ800 ms relative to
the camera change, and coherence was calculated in 2 Hz steps from 2 to
60 Hz with a resolution of 2 Hz. Using the multi-taper FFT method
implemented in FieldTrip, we obtained one spectrum per subject, per
time-window, for every pair of the 3 ROIs in the left, and for every pair of
the 3 ROIs in the right hemisphere. A t-test was then used to compare the
coherence in the intact and the scrambled conditions across the 22 par-
ticipants at each frequency and time window, An FDR correction was
then used to correct for multiple comparisons across 5 time-windows and
30 frequencies at q< 0.01.

https://surfer.nmr.mgh.harvard.edu/
http://martinos.org/mne/stable/index.html
http://openmeeg.github.io/
http://openmeeg.github.io/
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3. Results

3.1. Intact movies show higher ISC

The ISC analyses revealed that both intact and scrambled movies
(Fig. 3 rows one and two, respectively) induce widespread synchroni-
zation across viewers. As might be expected, in both cases the visual
cortices show high ISC reflecting the stimulus-locked nature of their re-
sponses. We also see significant ISC in parietal and premotor regions. The
third row depicts the contrast in neural responses to intact and scrambled
(I–S) stimuli. There were no significant voxels for which the scrambled
movie shows a higher ISC than the intact movies. On the other hand, a
number of areas show higher ISC for intact movies. This included large
clusters in the parietal lobe that extended into the L/R postcentral gyrus
(including BA2, BA1 and BA3a,b), L/R superior (area 5L and 7A in
particular) and inferior parietal lobule (PF/PFt in particular and a left-
lateralized cluster extending along the intraparietal sulcus and PGa)
and SII/PV. Other clusters were found in the dorsal mid-insula, dorsal
pre-central gyrus (including BA6), the middle frontal gyrus, temporal
visual area TE, occipital visual areas (including V2/V3) and cerebellar
vermis and lobules V (Table 2). All of these clusters are larger than ex-
pected by chance (i.e. cluster-wise pfwe<0.05).

3.2. Overlap between ISC (I–S), AOEN and the ToM network

To investigate the degree to which I–S overlaps with regions
involved in the observation and execution of individual motor acts (the
so called AOEN), we used a functional localizer scan with a separate
group of participants (see Supplementary Methods S1). Briefly, it in-
cludes all voxels that are activated both (a) when participants viewed
goal-directed acts more than meaningless hand movements and (b) when
participants executed motor acts.

The overlapping regions include large parietal clusters in both
hemispheres that include somatosensory areas (BA2 and BA1 and SII in
particular), inferior parietal regions (PFt/PFop in particular) and the
superior parietal lobe (more specifically areas 7A and 5L). Overlapping
regions also included right ventral premotor cortices (BA44), a region in
the left dorsal mid insula (Table 3; Fig. 2 bottom panel). We also calcu-
lated the percentage of overlap between AOEN and ISC (I–S) to find that
19% of all AOEN voxels show more ISC during I than S, and 38% of the
ISC (I–S) contrast fell within the AOEN.

To investigate the degree of overlap with the ToM network, we used
the activation-likelihood estimate meta-analysis proposed by Mar (2011)
that identified regions recruited by ToM based on non-story tasks. No ISC
(I–S) voxels were found to overlap with these ToM areas.

3.3. GLM reveals areas differentially more active during the scrambled
movies

Because ISC focuses on stimulus-locked activity, to identify regions
with differential stimulus-induced activity (i.e., activity triggered by the
stimuli but at different times in different participants), we analysed the
data using an approach in which each movie was modelled as a block in a
GLM (bGLM) to capture the overall average activity during the viewing of
a movie. Results of the bGLM are shown in Fig. 3 (middle panel) for I> 0,
S> 0 and I–S. Note that for I–S (Table 4), we have both positive t values
(i.e. I> S) and negative t-values (i.e. S> I). Regions with higher average
activity for I than for S (positive t-values in warm colours) included
bilateral dorsal precentral clusters in BA6, a right parietal cluster
encompassing BA2, BA7 and BA5L and a left parietal cluster including
BA7 and 5L, which were larger than expected by chance (pFWE<0.05).
We then found a smaller cluster in the left hemisphere including BA2 and
5L that did not survive cluster extent thresholding. Of these voxels, 85%
fell within the regions identified by the ISC(I–S) results. Regions with
higher activity for Scrambled movies (negative t-values, cold colours in
Fig. 3 middle panel; Table 4) consisted of (a) large clusters that survive a
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cluster-size pfwe<0.05 of at least 164 voxels in the visual cortex (V1, V3,
V4, Fusiform Gyrus), (b) the temporo-parietal junction (including the
superior/mid temporal gyrus PGa/PGp expanding into the most caudal
parts of PF and IPS), and (c) smaller clusters that fail to survive the
cluster-size FWE correction in the cuneus/precuneus, cerebellum, infe-
rior and middle frontal gyrus (incl. BA45 and BA44).

3.4. Overlap between bGLM, AOEN and ToM circuit

As for the ISC, the bGLM contrast identifying preferential activation
for intact sequences (I–S) revealed no overlap with the ToM network but
did overlap (as the ISC I–S did) substantially (985 voxels) with the
AOEN in dorsal premotor and parietal (BA7, BA2, BA5L and IPS) regions
(Table 5, Fig. 2 bottom panel).

Regions showing preferential activation for scrambled sequences
(bGLM S–I) overlapped in 225 voxels with the ToM network around the
temporo-parietal junction (including mainly the region PGa and superior
andmiddle temporal gyrus), andminimally (20 voxels not surviving FWE
correction) with the AOEN localizer in visual brain regions (Fusiform
Gyrus) (Tables 5 and 6, Fig. 2 bottom panel).

3.5. Network interactions in ISC (I–S)

To further characterize the brain regions showing sequence-level in-
formation (Fig. 3 ISC (I–S) and Fig. 4a), we explored the correlation
across their time courses after averaging the time courses across all
participants to isolate stimulus-triggered activity. As the right parietal
cluster spanned too many cytoarchitectonic regions at the FDR-corrected
threshold of t¼ 3.93 and at FWE cluster-size correction (see first cluster
in Table 2), we increased the threshold for this cluster to t¼ 4.1, which
caused it to split into three more homogeneous regions. A k-means
clustering then revealed that the 10 ROIs segregate into three main
networks of activity (shown as red, green and blue in Fig. 4b) based on
their cross-correlation pattern. The “red” network includes bilateral
supramarginal clusters (including BA2 and PF), right inferior frontal
gyrus (BA45), right precentral gyrus (BA44) and left insula. The “blue”
network comprises right visual cortices (including areas V1, V2 and V3)
and left angular and dorsal premotor cortices. The “green” network in-
cludes clusters in the bilateral superior parietal lobule (including 7A and
5L). Correlation between the Eigen-time courses of these three networks
(Fig. 4c) was positive between the red and the green networks and
negative between the other pairs.

In order to have a better understanding of the kind of information
encoded in these networks (Fig. 4d–f), we plotted the Eigen time course
of each of the networks for each movie averaged across all subjects. By
averaging the activity across all participants, one expects a flat line if
activity is not synchronized across participants. The activity should peak,
i.e. be positive or negative, if the stimulus contains information that
triggers activity in the same direction across participants. Fig. 4g–i shows
a matrix for Intact (left) and Scrambled (right) stimuli. Each row of the
matrix corresponds to the brain activity triggered by a specific movie
averaged across all subjects. To enable a more compact representation,
the time course of activity is shown in a colour code rather than an
activation line, with time along the x-axis, and colour intensity signalling
the magnitude of activation. Warm colours signify positive, and cold
colours negative, activations. To identify the time points at which a
movie activated a network beyond what is expected by chance, we
randomly permuted the labels of all the intact and scrambled movies, and
averaged the activation. This procedure was repeated a thousand times. If
a movie systematically triggered brain activity, one would then expect
the averaged activity before permutation to have a peak that is taller than
that after randomization. We therefore blanked all the parts of the matrix
in which values remained within two standard deviations of the distri-
bution of permuted data. All the parts whose values exceeded these
bounds are shown in warm or cold colours.

Finally, to examine whether there are systematic trends across all



Table 3
ISC (I–S)& AOEN.Overlap between ISC (I> S) and the AOEN localizer. The ISC (I–S) contrast was inclusively masked in spmwith the AOEN network described in the
Supplementary Methods S1, and thresholded as in Fig. 3 and Table 2 with the max (tFDR¼ 3.93, tunc¼ 3.53). Conventions as in Table 2.

Cluster size # Voxels in cyto %Cluster Hem Cyto or anatomical description %Area Peak Information

T x y z

ISC(I> S), max (tFDR¼ 3.93, tunc¼ 3.53)¼ 3.93
1170 391.4 33.5 R AreaPFt (IPL) 93.8
pFWE<0.000 246.8 21.1 R Area2 38

98.1 8.4 R AreaPFop (IPL) 42.9
77 6.6 R Area1 11
68.9 5.9 R Area7PC(SPL) 15.2
59.9 5.1 R AreaPF(IPL) 8.9 6.03 56 �34 46

R AreaPF(IPL) 5.91 60 �32 46
47.9 4.1 R AreahIP2(IPS) 22.7
39 3.3 R Area3b 6.2 4.42 58 �12 24
32.4 2.8 R Area7A (SPL) 4.2 5.64 28 �60 64

R Area7A (SPL) 5.41 24 �58 66
20 1.7 R Area5L (SPL) 2.7 5.19 22 �56 68
12.4 1.1 R AreahIP3(IPS) 2.7
4.3 0.4 R Area3a 2.1
4.1 0.4 R AreaPFm(IPL) 0.6
2.5 0.2 R AreaOP4 [PV] 0.8

721 368 51 L AreaPFt (IPL) 63.1
pFWE<0.000 145 20.1 L AreaPFop (IPL) 65.3 6.23 �64 �20 26

39.1 5.4 L AreaPF(IPL) 7.5 7.36 �64 �34 36
31.6 4.4 L AreaOP1 [SII] 8.5
25.1 3.5 L Area3b 4.5
21 2.9 L AreaOP4 [PV] 5.8
17.5 2.4 L Area1 3.1
5 0.7 L Area2 0.9
1.9 0.3 L AreaPFcm(IPL) 0.6

179 104.8 58.5 R Area44 17.5
pFWE<0.000 R PrecentralGyrus 5.91 62 8 26

173 L RolandicOperculum 5.71 �40 0 14
pFWE<0.000

99 58.1 58.7 L Area7A (SPL) 4.6 5.29 �22 �58 64
pFWE<0.000 29.1 29.4 L Area5L (SPL) 4.2

11.1 11.2 L Area7PC(SPL) 6.5

R.M. Thomas et al. NeuroImage 183 (2018) 677–697
movies, we performed a grand-average across movies, and show it below
the matrices together with the bounds obtained from permuted grand-
average values (dotted lines in the figure). The length of the movies
had been rescaled to facilitate averaging across movies. This procedure
was repeated for each of the three networks. In the case of the intact
movies, finding moments of significant excursion within a movie is un-
surprising, given that the regions of interest were so selected as to have
strong ISC for the intact movies. That the excursions remain significant
after averaging across movies, however, indicates that the networks
become synchronized consistently at specific moments of the movies.
Interesting differences were noted in the timing between the three net-
works. The blue network, with its visual brain regions, is the first to show
activation, while the other two networks are suppressed. This situation
then reverses, with the activity of the green, and finally the red network
becoming positive later in the movies. When processing the scrambled
movies instead none of the networks shows significant deflections, except
for the red network that shows negative ISC in the first part of the movie.
We did not correct for multiple comparisons across time for this analysis
because the analysis aimed at accurate identification of the points at
which networks are most synchronized rather than just establish that
they synchronize, which would be circular given the way the ROIs were
selected.

3.6. Comparison of ISC and bGLM results

We employed ISC and bGLM as streams of analysis leading to the
identification of stimulus-locked and stimulus-induced activity respec-
tively. To better understand the relation between these methods, we also
extracted the parameter estimates of the bGLM from regions showing
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increased ISC, and ISC values from regions showing altered bGLM (Fig. 5,
top row). In each case, we plotted the parameter estimates (beta values)
for the ISC on the x-axis and the bGLM values on the y-axis. For each ROI,
we then show the value for the intact movie as a circle, and for the
scrambled movie as a cross. For ROIs selected on the basis of increases in
ISC, there is no point in statistically comparing the ISC value for intact
and scrambled movies, as this would be circular. However, we tested for
significant changes in the bGLM. The middle row of Fig. 5 shows sig-
nificant changes with a solid line and insignificant changes with a dashed
line. This analysis makes it clear that parietal regions of the red network
(ROI 4 and 10) displayed increase in average brain activity and higher
ISC in the intact than in the scrambled movies. At the same time, regions
in the prefrontal cortex and visual regions (ROI 1, 6 and 8) showed
reduced average activity and increased ISC. The other ROIs did not
change their average activity level at all, despite changes in ISC. For ROIs
selected on the basis of changes in bGLM, we tested the significance of
the change in ISC. We see that most bGLM ROIs that show higher activity
in the Intact condition (Fig. 4, middle column) also show higher ISC. In
contrast, none of the bGLM ROIs showing more activity in the scrambled
condition showed significant changes in the ISC (Fig. 4, rightmost col-
umn). This suggests that activity triggered specifically by the intact
movies, as identified using a GLM, was stimulus-locked, and conse-
quently led to increased ISC. Activity triggered specifically by the
scrambled movies was instead stimulus-induced rather than stimulus-
locked. The bottom row of Fig. 5 depicts the regions of overlap be-
tween ISC (I–S) and bGLM (I–S), and between ISC (S–I) and
bGLM(S–I). It also shows that increases in ISC(I–S) can overlap with
both bGLM increases (I–S) and decreases (S–I).



Table 4
BGLM. Regions with bGLM Intact> Scrambled, and Scrambled> Intact. Contrasts were thresholded with t¼ 3.87 and t¼ 3.53 respectively, corresponding to the max
(tFDR¼ 3.87, tunc¼ 3.53) and max (tFDR¼ 3.19, tunc¼ 3.53). Conventions as in Table 2.

Cluster size FWE # Voxels in cyto % Cluster Hem Cyto or anatomical description % Area Peak Information

T x y z

bGLM(I> S), max (tFDR¼ 3.87, tunc¼ 3.53)¼ 3.87
436 R Precentral Gyrus 7.81 26 �14 58
pFWE<0.000 R Precentral Gyrus 5.90 26 �10 48

260 108.9 41.9 R Area7PC(SPL) 15 6.33 30 �46 58
pFWE<0.002 97.3 37.4 R Area2 4.7

34.5 13.3 R Area5L (SPL) 0.9 5.11 18 �56 60
6.9 2.6 R Area7A (SPL) 0.8
3.8 1.4 R AreahIP3(IPS) 0.1

236 L Precentral Gyrus 6.37 �26 �16 52
pFWE<0.001 L Precentral Gyrus 5.28 �26 �14 60

L Precentral Gyrus 4.92 �18 �18 60
L Superior Frontal Gyrus 4.47 �20 �6 64

163 88.6 54.4 L Area5L (SPL) 12.8 5.60 �22 �50 60
pFWE <0.010 27.8 17 L Area7A (SPL) 2.2

26.8 16.4 L Area7PC(SPL) 15.7 6.05 �32 �48 66

50 27.9 55.8 L Area2 5.3 5.13 �36 �38 48
pFWE >0.24 1.3 2.5 L Area5L (SPL) 0.2
bGLM(S> I), max(tFDR¼3.19, tunc¼3.53)¼3.53
1090 277.8 25.5 L AreahOc4v [V4(v)] 38.2 6.00 �24 �76 �16
pFWE <0.000 265 24.3 L AreahOc3v [V3v] 28.6 8.79 �10 �88 �10

158.8 14.6 L AreaFG1 62.3 4.78 �30 �68 �18
112.9 10.4 L AreahOc1 [V1] 5.6
90.6 8.3 L LobuleVI(Hem) 4.8 4.36 �34 �64 �22
67.6 6.2 L LobuleVIIacrusI(Hem) 2.2
47.3 4.3 L AreahOc2 [V2] 5
18.4 1.7 L AreaFG4 3.1
5.5 0.5 L AreaFG2 1.1
1 0.1 L LobuleVI(Verm) 0.5

L FusiformGyrus 4.42 �30 �62 �4

628 95.9 15.3 R AreaPGa(IPL) 12.9 5.12 64 �48 20
pFWE <0.000 R AreaPGa(IPL) 4.06 54 �50 24

51.1 8.1 R AreahOc4la 5.8 3.78 54 �68 12
R AreahOc4la 3.70 52 �70 10

29.6 4.7 R AreaPGp (IPL) 3
15.9 2.5 R AreaPFm(IPL) 2.3
8.4 1.3 R AreaPF(IPL) 1.2

R SuperiorTemporalGyrus 5.89 46 �38 10
R MiddleTemporalGyrus 5.85 56 �50 6
R MiddleTemporalGyrus 5.00 44 �72 18
R MiddleTemporalGyrus 4.24 56 �60 8

431 58.1 13.5 R AreahIP1(IPS) 20.1
pFWE <0.000 25.9 6 R AreahIP3(IPS) 5.7

24.4 5.7 R AreaPGa(IPL) 3.3
15.9 3.7 R AreaPGp (IPL) 1.6
5.4 1.2 R Area7A (SPL) 0.7

R Angular Gyrus 5.68 42 �66 50
R Angular Gyrus 5.15 36 �58 42

420 145.1 34.6 L AreaPGa(IPL) 22.7 4.70 �54 �56 26
pFWE <0.001 40.5 9.6 L AreaPFm(IPL) 7 4.55 �56 �58 40

L AreaPFm(IPL) 4.20 �56 �52 46
L AreaPFm(IPL) 3.67 �52 �60 44

7.8 1.8 L AreaPFcm(IPL) 2.4
2.4 0.6 L AreaPGp (IPL) 0.3

L SupraMarginalGyrus 5.20 �50 �50 24
L SuperiorTemporalGyrus 4.97 �64 �48 12
L SuperiorTemporalGyrus 4.44 �58 �48 18
L MiddleTemporalGyrus 4.64 �56 �58 10
L Angular Gyrus 3.95 �40 �52 26
L Angular Gyrus 4.03 �38 �54 28

174 96.8 55.6 R AreahOc4v [V4(v)] 15.6 4.26 24 �76 �12
pFWE <0.040 39.9 22.9 R AreaFG1 16 4.70 26 �64 �8

32.4 18.6 R AreahOc3v [V3v] 3.8

164 71.9 43.8 L AreahOc4d [V3A] 12.6 7.53 �20 �92 14
pFWE <0.048 34.9 21.3 L AreahOc3d [V3d] 3.5 3.96 �10 �94 22

12.5 7.6 L AreahOc4lp 1.5
5.5 3.4 L AreahOc1 [V1] 0.3

(continued on next page)
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Table 4 (continued )

Cluster size FWE # Voxels in cyto % Cluster Hem Cyto or anatomical description % Area Peak Information

T x y z

106 R Cuneus 4.76 12 �70 38
pFWE >0.166 R Cuneus 4.05 20 �62 36

R Precuneus 3.88 18 �60 34

99 30.6 30.9 R AreaFG4 6.3
pFWE >0.194 1.3 1.3 R LobuleVI(Hem) 0.1

R FusiformGyrus 5.69 26 �44 �14

81 27.3 33.6 R Area45 2.6 4.40 52 32 8
pFWE >0.289 R IFG (p.Triangularis) 4.73 42 36 0

70 35.6 50.9 L AreahIP3(IPS) 7.8 4.02 �30 �62 40
pFWE >0.368 9.6 13.8 L AreaPGa(IPL) 1.5 3.78 �34 �68 46

2.8 3.9 L Area7A (SPL) 0.2

64 2.1 3.3 R Area44 0.4
pFWE >0.419 R IFG (p.Triangularis) 4.58 44 12 22

49 R MiddleFrontalGyrus 4.90 50 26 32
pFWE >0.573 R MiddleFrontalGyrus

41 L MiddleFrontalGyrus 4.57 �42 6 52
pFWE >0.667 L MiddleFrontalGyrus 4.12 �40 10 52

L MiddleFrontalGyrus 3.85 �34 10 56

37 1 2.7 L Area44 0.1
pFWE >0.716 L IFG (p.Triangularis) 4.11 �38 18 18

L IFG (p.Opercularis) 3.81 �42 10 20

36 L IFG (p.Opercularis) 4.38 �40 14 32
pFWE >0.728

Table 5
BGLM & AOEN. Overlap between bGLM (I> S) and the AOEN localizer. The bGLM (I–S) and bGLM (S–I) contrasts were inclusively masked in spm with the AOEN
network described in the Supplementary Methods S1, and thresholded with t> 3.87 for I–S (max (tFDR¼ 3.87, tunc¼ 3.53)) and t> 3.53 for S–I (max (tFDR¼ 3.87,
tunc¼ 3.53)). Conventions as in Table 2.

Cluster size FWE # Voxels in cyto % Cluster Hem Cyto or anatomical description % Area Peak Information

T x y z

bGLM (I> S) & AOEN, max (tFDR¼ 3.87, tunc¼ 3.53)¼ 3.87
379 R Precentral Gyrus 7.81 26 �14 58
pFWE <0.000 R Precentral Gyrus 5.9 26 �10 48

233 106.9 45.9 R Area7PC(SPL) 23.5 6.33 30 �46 58
pFWE <0.002 95 40.8 R Area2 14.6

24 10.3 R Area5L (SPL) 3.3 5.11 18 �56 60
3.8 1.6 R AreahIP3(IPS) 0.8
2.3 1 R Area7A (SPL) 0.3

204 L Precentral Gyrus 6.37 �26 �16 52
pFWE <0.004 L Precentral Gyrus 5.28 �26 �14 60

L Precentral Gyrus 4.72 �20 �18 62
L Superior Frontal Gyrus 4.47 �20 �6 64

119 74 62.2 L Area5L (SPL) 10.7 5.6 �22 �50 60
pFWE <0.031 20.9 17.5 L Area7PC(SPL) 12.2 5.8 �30 �50 64

19.6 16.5 L Area7A (SPL) 1.6

50 27.9 55.8 L Area2 5.3 5.13 �36 �38 48
pFWE >0.249 1.3 2.5 L Area5L (SPL) 0.2
bGLM (S> I) & AOEN, max(tFDR¼3.19, tunc¼3.53)¼3.53
20 16.5 82.5 L AreaFG1 6.5 4.58 �30 �66 �18
pFWE >0.908 2 10 L LobuleVI(Hem) 0.1

1.5 7.5 L AreaFG4 0.3
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3.7. Intact movies lead to faster and smaller EEG responses compared to
scrambled movies

Different models of the mirror neuron system inspire different pre-
dictions about responses to individual motor acts depending on whether
they are embedded in intact or scrambled sequences (Fig. 2). To test these
predictions, we complemented the fMRI analyses with an analysis of
electrophysiological responses triggered by each individual motor act, by
aligning the EEG responses to the camera changes. The EEG data have
higher temporal resolution. They also overcome the limitation of fMRI,
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viz., that inhibition might lead to an increase in BOLD due to the meta-
bolic cost of the inhibition (Mangia et al., 2009). Fig. 6 shows the ERP
that has been averaged across five distinct sets of EEG channels pro-
gressing from posterior to anterior channels. We found that the ERP for
intact movies started rising faster than for the scrambled movies, which
was visible in the difference curves (Fig. 6, insets) as an initial red phase.
We found that the ERP for intact movies had lower amplitude than that
for the scrambled movies later in the ERP, which is visible as a blue phase
in the difference curve.

To quantify these observations, we performed two analyses. First, using



Table 6
BGLM (S–I) & ToM areas. Overlap between bGLM (S> I) and the ToM regions. The bGLM (S–I) contrasts was inclusively masked in spm with the ToM network
described in Mar et al. (2011), and thresholded with t> 3.53, which corresponds to the max (tFDR¼ 3.19, tunc¼ 3.53). Conventions as in Table 2.

Cluster size # Voxels in cyto % Cluster Hem Cyto or anatomical description % Area Peak Information

T x y z

bGLM (S> I) & ToM, max (tFDR¼ 3.19, tunc¼ 3.53)¼ 3.53
225 32.6 14.5 R Area PGa (IPL) 4.4 3.95 54 �50 22
pFWE <0.015 R Area PGa (IPL) 3.85 60 �52 20

7.5 3.3 R Area PGp (IPL) 0.8
R Superior Temporal Gyrus 5.48 48 �42 12
R Middle Temporal Gyrus 5.16 54 �50 8
R Middle Temporal Gyrus 7.4 4.24 56 �60 8

143 47.4 33.1 L Area PGa (IPL) 0.6 5.1 �52 �52 22
pFWE <0.075 L Area PGa (IPL) 4.7 �54 �56 26

3.5 2.4 L Area PFm (IPL) 0.2
1.5 1 L Area PGp (IPL)

L Middle Temporal Gyrus 4.62 �54 �56 10
L Superior Temporal Gyrus 4.44 �58 �48 18

Fig. 5. The ISC – bGLM relation. The top
row depicts the ROIs corresponding to (from
left to right) ISC, bGLM (I–S) and bGLM
(S–I). The middle row the parameter esti-
mates (β weights) from the ISC (x-axis) and
bGLM (y-axis) as a function of the Intact/
Scrambled state of the movie for the ROIs
shown above. Significant differences be-
tween intact and scrambled in the dimension
that was not used to define the ROI is shown
by solid lines, non-significant differences, by
dotted lines. The bottom row shows the
overlap between ISC(I-S) with bGLM (I–S)
and ISC(I-S) with bGLM (S–I). The numbers
correspond to the ROI and the subscript I/G
indicates membership to ISC/bGLM, so that
4I2G indicates an overlap between ROI 4 of
the ISC and ROI 2 of the GLM.

R.M. Thomas et al. NeuroImage 183 (2018) 677–697
two simplemodels fitted separately to each participant's ERPs, we explored
the presence of a shift in latency and a difference in responsemagnitude. In
Model 1, in which Scrambled(t) ¼ Intact (t-λ), we optimized λ so as to
reduce the residual error over the period from 0 to 300ms in order to focus
on the rising of the ERP and quantify the shift in latency. InModel 2, where
Intact(t) ¼ α*Scrambled(t), we optimized α so as to reduce residual errors
for t from 0 to 650 ms in oder to take the entire response into account and
quantify the relative response magnitude. We then compared the fitted
parameters against the null hypotheses λ ¼ 0 and α ¼ 1 across participants
using a cluster-based statistic (cf. the Method Section). Fig. 7a shows a
significant shift in response latency over occipital and parietal electrodes,
with the intact condition leading to earlier responses (left panel) and a
significant scaling over occipital, parietal and (left) frontal electrodes with
the scrambled condition leading to larger responses. Second, we explored
for time bins of 50ms, which electrodes show higher ERPs to intact than
scrambled movies (Fig. 7b) to confirm observations from the difference
curves of Fig. 6. Results confirmed that during the first 250ms, parietal and
occipital electrodes show stronger responses to the intact movies, in line
with the earlier rise time. From 250 to 400ms, no significant differences
were observed. The pattern then reverses, with the scrambled condition
triggering larger ERPs from 400 to 650ms over parietal and occipital
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electrodes. To provide an approximate mapping of the likely cortical
sources for these differences at the electrode level, we performed a source
localization of the ERP difference per time bin (Fig. 7b right columns). The
similarity of this source distribution over time suggests that a similar
network of brain regions, including bilateral parietal and right visual
cortices, is responsible for the earlier rise-time and reduced amplitude in
the intact compared to the scrambled condition. (Given the limitations of
source localization, we do not provide a coordinate table for these
localizations).

Fries (2015) and van Kerkoerle et al. (2014) report that within the
visual system, feed-forward information and feed-back information
across cortical regions increase coherence in the gamma band and the
alpha/beta band, respectively. Taking stock from this observation, we
compared the coherence between visual and supra-marginal ROIs (c.f.
Methods) across the intact and scrambled movies. If intact movies lead to
more feedback predictions and less feedforward prediction errors, and
the observations of Fries and van Kerkoerle et al. hold outside of the
visual system, we would expect relatively more coherence in the
alpha/beta band for intact, and more in the gamma band for scrambled
movies. However, our analysis did not revealed any significant difference
in coherence between these ROIs (q> 0.01).



Fig. 6. ERP for the intact (red) and scrambled
(red) conditions. The inset below each ERP
shows the difference curve (red for positive I-S
and blue for negative) between intact and
scrambled acts. The ERPs shown are also aver-
aged across all the channels within the black
shaded region shown on the sketch shown above
each ERP. The channel groups enclose (a) OI1h,
Oz, OI2h, O1, POO1, POO2, O2; (b) PO3, PPO1h,
POz, PPO2h, PO4, P3, P1, Pz, P2, FP1, CPP5h,
CPP3h, CPP1h, CPP2h, CPP4h, CPP6h; (c) CP3,
CP1, CPz, CP2, CP4, CCP5h, CCP3h, CCP1h,
CCP2h, CCP4h, CCP6h, C3, C1, Cz, C2, C4,
FCC5h, FCC3h, FCC1h, FCC2h, FCC4h, FCC6h;
(d) FC3, FC1, FCz, FC2, FC4, FFC3h, FFC1h,
FFC2h, FFC4h, F3, F1, Fz, F2, F4; (e) AF3, AFF1h,
AFF2h, AF4, AFP1, AFz, AFP2.
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3.8. Intact movies lead to more mu-suppression at central electrodes

Our fMRI results suggest more consistent recruitment of the AOEN
during intact movie processing than during the processing of scrambled
movies. EEG power in the mu-band at central electrodes C3, C4 and Cz is
considered a proxy for AOEN recruitment (Arnstein et al., 2011; Pineda,
2005). During action observation and action execution, the power in the
lower (�10Hz) and upper (�20Hz)mu-band is reduced in comparison to
control conditions (Pineda, 2005), and reduced mu-power on a trial-to-
trial basis co-occurs with higher BOLD signal in the AOEN (Arnstein
et al., 2011). We therefore hypothesized that mu-power at C3, C4 and Cz
should be lower (more suppressed) during intact than scrambled movies,
i.e., the power ratio powerintact/powerscrambled should fall below 1 in the
mu-range (10–20Hz). Fig. 8 shows results that confirm this prediction.
We found the power-ratio to be below 1 in the 10–20Hz range in all the
three electrodes over a range of time points relative to the camera change
(Fig. 8 middle rows). Averaging power over time revealed significantly
more mu-suppression for intact movies than for scrambled movies (i.e.
power-ratio <1, qfdr<0.05) from 8 to 22 Hz for C3, 10–20 Hz for C4, and
12–28 Hz in Cz (Fig. 8 bottom row).

4. Discussion

In this experiment we set out to explore where and how the brain
encodes sequence-level information when motor acts occur in sequences.
Participants passively viewed a sequence of motor acts either in their
natural, i.e., intact order or in a scrambled order. We measured their
BOLD response using fMRI and their electrophysiological responses using
EEG.

4.1. Mapping sequence level information using fMRI

Regions that show higher ISC during the processing of intact movies
comprised three functional networks. One of these networks (“blue”
network in Fig. 4d) became active early in watching the movies. This
network consisted of the right visual cortices (including area V1, V2 and
V3), and the left angular (PG) and dorsal premotor cortices often jointly
associated with stimulus-driven spatial attention within the dorsal atten-
tion network (Nozawa et al., 2014; Nee and Jonides, 2014). The other two
networks viz., the “red” and the “green” ones, were negatively correlated
over time with the first network and became activated later when actions
in the movies became more predictable. The red network in Fig. 4e was
formed by bilateral parietal clusters including (a) the PF complex in the
rostral inferior parietal lobe, (b) the primary somatosensory cortex
including BA2,1,3a, and 3b, (c) the secondary somatosensory cortex
including PV and SII, (d) the rostral intraparietal sulcus, (e) the left
mid-dorsal insula, (f) right inferior (BA44), and (g) mid-frontal gyri. Much
of this network became activated during execution of actions. This network
demonstrates strong similarities with the AOEN (see below).
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The green network consists of the superior parietal lobule bilaterally
(including 7A/PC and 5L) and has often been associated with the inte-
gration of vision, somato-sensation, and action (Bremmer et al., 2001;
Graziano and Cooke, 2006; Huang et al., 2012; Ishida et al., 2010;
Schindler and Bartels, 2018).

We noted in the introduction that there is a difference of opinion in
the neuroscience community as to whether information beyond single
motor acts should fall within the AOEN or in the ToM network. We
therefore wanted to investigate whether the three networks identified by
us overlap with the AOEN and/or with the ToM network.

4.2. Overlap between sequence-level information and the AOEN

We found substantial overlap within the regions included in our
AOEN localizer. Regions of significantly higher ISC during intact movies
within the AOEN consisted of most of the red network, and, in particular
the bilateral large parietal clusters including the PF complex, SI and SII,
as well as smaller frontal clusters in the right ventral premotor cortex
(BA44) and left mid-dorsal insula. AOEN overlapped also with the green
network in the superior parietal areas BA5 and BA7. Given that the intact
and scrambled movies contained identical segments showing individual
motor acts, if the AOEN were only to represent individual motor acts in
isolation, we would expect the ISC to be identical in the two conditions.
That the ISC was higher for the intact movies shows that the brain ac-
tivity in these regions is also sensitive to the transitions between actions,
providing evidence that this network contains information at the
sequence level beyond individual motor acts. Themu-band in central EEG
electrodes (C3, C4 and Cz), a putative proxy for AOEN activity (Arnstein
et al., 2011; Pineda, 2005), was more suppressed during the intact than
during the scrambled movies. This phenomenon is further evidence that
there is greater recruitment of the AOEN in the intact case than in the
case of scrambled movies.

Many of the regions of the red network in our human participants that
overlap with the AOEN have homologues in the monkey brain that have
been shown to contain mirror neurons. These include the human ho-
mologues of the following regions: (a) monkey premotor region F5
(Gallese et al., 1996; C Keysers et al., 2003; Kohler et al., 2002; Umilt�a
et al., 2001), (b) monkey PF (Fogassi et al., 2005; Rozzi et al., 2008) and
(c) monkey SII and adjacent sectors of SI (Hihara et al., 2015). This
observation agrees with the predictions made by Hebbian learning
models of the mirror neuron system that suggest that this system should
encode the transitions between actions (Keysers and Gazzola, 2014). It
should be noted that any stimulus triggered brain activity must have two
features for it to translate into an increase in ISC. It must occur at the same
location across individuals after normalization and smoothing and it must
take place at approximately the same time across participants (Supple-
mentary Materials). The significant ISC increase we observe in the AOEN
thus suggests that information about the transition between acts in the
AOEN has these features – at least to some extent. This is in line with the



(caption on next column)

Fig. 7. Differences in ERP across conditions. (a) Topography of the parameters
lamda (left) and alpha (right). Electrodes where lamda differs significantly from zero
(with ERPs from Intact movies rising faster than those from Scrambled movies) or
alpha differs significantly from one (with ERPs from Scrambled movies having higher
magnitude) based on a cluster statistic are shown as red crosses. (b) Assessment of
ERP differences as a function of time. On the left the topoplot illustrates the dif-
ference in ERP between the intact and scrambled ERPs as a function of the time
bin indicated. On the right side, a minimum norm source reconstruction of the
difference. Blue indicates locations with Scrambled> Intact; yellow those were
Intact> Scrambled. In all cases, sensors with significant differences between
Scrambled and Intact (corrected for multiple comparison using a cluster statistic
at p< 0.05) are marked in red.
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reliable timing observed in single mirror-neuron activity when observing
single motor acts (Keysers et al., 2003; Kohler et al., 2002) and the
consistency in the neural location activated by the sight of motor acts
across individuals (Gazzola and Keysers, 2009).

The sensitivity of AOEN regions to the sequence in which motor acts
are observed supports the findings of a small number of studies that other
situational information capable of predicting future acts can also
modulate mirror neuron activity. Fogassi et al. (2005) have shown that if
a monkey repeatedly witnesses someone grasping an object to bring it to
the mouth, the activity of grasping mirror neurons is different from that
in a context in which the monkey repeatedly sees someone grasp an
object to place it in a container. Umilt�a et al. (2001) have shown that
when an occluding screen is placed in front of a graspable object, seeing a
hand disappear behind this screen leads to a higher discharge in mirror
neurons sensitive to the grasping action than seeing it disappear behind a
screen that was placed in front of an empty platform. Finally, Iacoboni
et al. (2005)showed that the ventral premotor node of the AOEN in
humans responds differently to grasping a cup with a background of
objects suggesting drinking vs. a background of objects suggesting
washing the cup. Taken together, these findings suggest that the AOEN
can take preceding acts, the objects in the scene and the current situation
into account in generating its response to the sight of a particular motor
act, thereby demonstrating its possession of information that goes
beyond single motor acts. Further support for an association between the
AOEN, the mirror neuron system and sequence-level information is ob-
tained from the fact that most of the regions that carried sequence-level
information in our analysis of action observation data were also activated
when participants themselves manipulated objects (“*” in Fig. 4) - a
defining feature of mirror brain regions.

The green network also overlapped with the AOEN. Areas BA5 and
BA7 are not typically considered part of the mirror neuron system. These
regions have functional properties similar to those of monkey region VIP
(Bremmer et al., 2001; Huang et al., 2012; Schindler and Bartels, 2018).
VIP neurons in monkey brains respond to (a) the haptic experience of
touching an object with a specific body part, (b) the sight of objects close
to and approaching that body part, and (c) the sight of another person
being touched at the equivalent body part. VIP neurons, thus, can be said
to provide a somatosensory analogue to traditional mirror neurons
(Ishida et al., 2010). Neurons in this region have often been conceptu-
alized as visually anticipating upcoming interactions between the body
and objects (e.g. Graziano and Cooke, 2006). Their vicarious activation
during observation of similar actions performed by others (Ishida et al.,
2010) endows them with similar anticipatory functions during the
observation of action. It is therefore perhaps not surprising, that the
human homologues of VIP are sensitive to sequence information during
action observation.
4.3. Contributions of the ToM network

We did not observe any overlap between changes in ISC and the ToM
network. However, a bGLM analysis that compared the average activity
during the entire movie in the intact version to that in the scrambled
version revealed that some voxels in the ToM network show higher



Fig. 8. Higher mu-suppression for intact than scrambled movies. Time frequency decompositions were performed for intact (top row) and scrambled (second
row) movies relative to the camera-change (t¼ 0) for the three central electrodes C3 (left), Cz (middle) and C4 (right column). A t-test comparing for each time point
and frequency the power-ratio I/S against 1 revealed less power in the I than S condition (i.e. negative t-values) in the mu band (10–20 Hz) over multiple time-points
(3rd row). Thresholding this comparison at punc<0.05 (red) or qfdr<0.05 (yellow) reveals significant differences in the expected direction (i.e. ratio<1) over many
time-points (4th row). The bottom row represents the power ratio obtained after averaging power over the entire time-window separately for each frequency and
condition and then calculating the ratio (mean� sem across the 22 participants). The ratio I/S was then compared against 1 using a one-tailed t-test corrected for
multiple comparison using qfdr <0.05. Time epochs of I/S< 1 are then shown in yellow (q< 0.05).
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average activation in the scrambled condition though this did not
translate into higher ISC in this network in that condition. As mentioned
earlier (cf. Introduction), ISC requires activity to be stimulus-locked, i.e.,
to overlap in time across participants, while a bGLM does not (See Sup-
plementary Excel Table for the difference between ISC and bGLM). This
suggests that in contrast to the AOEN that becomes preferentially
recruited in a stimulus-locked way when acts are embedded in natural
sequences, the ToM network becomes preferentially recruited when
motor acts deviate from natural sequences and then at times that vary
across participants. The greater activity level noticed in this network in
the scrambled actions case agrees well with the observation that ToM
brain regions go online when witnessing implausible actions (Brass et al.,
2007). That it is less stimulus-locked suggests that it reflects processes
that are less automatic and more reflective, in line with the fact that
parietal region PG is part of the default mode network that is associated
with intrinsic rather than stimulus-driven cognition (Buckner et al.,
2008). That different networks are recruited depending on whether se-
quences of acts are in natural or disturbed sequences suggests that the
question whether sequence-level information is represented in the AOEN
or in the ToM system is perhaps ill posed. Rather, these two systems are
called up by sequence-level information under different circumstances
(Keysers and Gazzola, 2007).

4.4. Evidence for inhibition of predictable visual responses

The second aim of this project was to compare and contrast the pre-
dictions of different families of action observation models (Fig. 2). Our
EEG data support inhibitory feedback models by showing that the
amplitude and the latency of the brain's response to individual motor acts
are less for the intact than for the scrambled versions. Source localization
helps highlight the role of the parietal and visual cortices in generating
these changes in timing and amplitude. On the basis of theoretical con-
siderations alone, we had expected the changes in amplitude to be clearest
over the visual cortex, and changes in latencies over parietal and premotor
cortices – a separation that was not as evident in the EEG data which
displayed both of these changes over occipital and parietal electrodes.
The network identified in the source localization remained constant
across time. This might either reflect the technical limitations of EEG in
separating the activity of individual nodes or suggest that, in the sus-
tained regime of activity induced by sequences of acts, the execution-
observation network may begin to behave as one unified system rather
than as a series of individual nodes with distinct temporal properties – a
fact that is perhaps not surprising in a network with reciprocally con-
nected nodes.

However, over the slower temporal scale of fMRI, the visual and pa-
rietal nodes of the AOEN had distinguishable time courses that caused
them to fall within separable networks, with the parietal nodes peaking
in activity later than the visual nodes. With regard to the distinction
between inhibitory feedback and excitatory feedback between parietal
and visual cortices, an anti-correlation is observed between these fMRI
networks. This observation agrees with the inhibitory-feedback model
according to which the neural representation of observed actions should
shift from visual brain regions to parietal and premotor regions that
generate increasingly constrained and more accurate predictions based
on the somatosensory and motor connectivity pattern of the participant's
own actions in the intact sequences (Keysers and Gazzola, 2014). The
bGLM also shows that a number of brain regions associated with visual
processing show reduced BOLD signals during the processing of the intact
sequences – a finding that is compatible with the notion of visual cortices
receiving inhibitory feed-back in the context of intact sequences. Other
models would not predict such negative correlations. In the temporal
domain, we find that responses in the intact sequences occurs about
50–100ms earlier than in the scrambled situation (Fig. 7a). The order of
magnitude of this temporal shift is roughly in line with what could be
expected from the literature on perceptual momentum, according to
which, when we see an intact sequence of motions, our brain anticipates
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upcoming events tens of milliseconds in advance of their occurrence
irrespective of whether they are inanimate objects (Freyd and Finke,
1984) or human actions (Verfaillie and Daems, 2002). Anticipation of
this order of magnitude can also be observed in TMS experiments that
measure motor facilitation to the vision of still frames that precede an
action by ~100ms (Urgesi et al., 2010), and is in line with what we had
predicted in theoretical accounts based on Hebbian learning (Keysers and
Gazzola, 2014).

However, our data are limited in their ability to establish predictive
coding within the AOEN. First, our measurements are unable to establish
that the motor system is the cause for (i) the attenuation and acceleration
of the responses in occipital electrodes in the EEG data for intact sequences
or (ii) our ability to predict observed actions. Although it is compatible
with such causal relationships, we need neuromodulation and/or lesion
studies to establish such a causal connection. (Avenanti et al., 2017; Val-
chev et al., 2016). Secondly, a predictive coding framework posits that
signals across visual and parietal cortices should provide specific pre-
dictions and prediction-errors about what action will come next, and how
the observed action differs from these expectations – a specificity our data
do not claim to have achieved yet. Designs in which we present sequences
of actions that employ different body-parts (e.g. filling a glass with our
hands, and then drinking it by ingesting it through the mouth) in combi-
nation with pattern classification (Etzel et al., 2008; Oosterhof et al., 2010)
may be able to achieve greater specificity of these signals. Besides, pre-
dictive coding enables specific predictions about the direction of infor-
mation flow across conditions. As fMRI is not a reliable source of
information about the direction of information flow (Smith et al., 2011),
we have not looked for such directionality in our fMRI data. The high
temporal resolution of EEG would make it more suitable for such analyses.
However, volume conduction in EEG contaminates signals across nearby
sources, which is probably why our coherence analyses failed to provide
significant differences in coherence between the conditions. Repeating
similar experiments in patients with electro-corticographic (ECoG) elec-
trodes could overcome this limitation. Finally, neither fMRI nor EEG data
provide direct measures of neuronal activity. For fMRI, reduced BOLD
activity in the intact case compared to the scrambled condition probably
reflects reduced metabolic demands, but whether this is due to a reduction
in spiking in neurons representing the expected action remains unclear due
to the complicated relation between neural inhibition and metabolism (for
a critical discussion see Mangia et al., 2009). EEG also does not measure
the spiking of neurons, but the temporal summation of synchronized EPSP
and IPSPs in pyramidal neurons (da Silva, 2010). The attenuation of the
ERP in the intact sequence could thus reflect reduced firing in the pyra-
midal neurons providing the output of the visual cortex, as predicted by the
inhibitory feed-back model, but could also represent a desynchronization
of this activity without change in the number of spikes. Experiments in
which the activity of well-characterized neurons in the primate visual
cortex is measured as the subjects observe both intact and scrambled se-
quences could help disambiguate some of the results of our non-invasive
measurements reported here.

How the AOEN learns to encode information about transitions be-
tween acts is an interesting question albeit one that we cannot answer at
the present stage of our work. Let us imagine an agent performing a
sequence of acts A, B, and C. We know that systematic delays would occur
between motor commands and sensory reafferences. When premotor or
parietal regions trigger a motor command, there is a ~100ms gap before
the body part executes the action (Graziano et al., 2005), and another
~100ms elapses before sensory information (visual, acoustic and so-
matosensory) travels back through sensory cortices to high-level cortices
(Keysers et al., 2001, 2003; Kohler et al., 2002). Hence, in the parietal
cortex, when motor commands for act B are triggered, sensory re-afferent
information about act A would still be encoded in the synaptic input due
to the ~200ms sensory-motor delays. This way, Hebbian synaptic
learning would reinforce synaptic connections between sensory infor-
mation about act A and motor commands about act B (Keysers and
Gazzola, 2014). Given the way somatosensory and motor cortices are
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functionally interconnected during action observation (Valchev et al.,
2016), we could conceive of sensory-motor loops that would represent
the sequence of A->B, then from B->C, etc., based on the statistics of our
own past actions. Studies of synaptic plasticity in animal models could
test this hypothesis, and studies that vary the statistics of a participant's
past action-transition-probabilities could test whether past motor expe-
riences are indeed a significant source of these predictive signals.

5. Conclusion

Our data suggest that when acts are arranged in sequences, the
additional information is represented in separable networks depending
on whether the sequences adhere or do not adhere to the statistics of
natural actions. When acts adhere to the natural statistics of our own
actions, regions overlapping with the AOEN encode sequence-level in-
formation in a stimulus-locked fashion. An inhibitory feedback archi-
tecture, i.e., one in which the visual processing of acts is inhibited by
expectations derived from previous actions is then most compatible with
the pattern of responses we observed: (a) a reduction of visually evoked
responses in EEG, (b) a reduction in average BOLD activity in the visual
cortex for intact compared to scrambled sequences and (c) a negative
correlation between BOLD activity in the visual region and that in the
AOEN nodes.

When the order of the acts violates the natural statistics, brain regions
associated with ToM seem to encode sequence-level information in a
spatially consistent but temporally more variable way. This is seen in an
increase of average BOLD activity without changes in ISC in this network.
These findings call for more in-depth studies using brain activity
manipulation and investigating lesions that could throw fresh light on
whether sequence processing requires the AOEN when sequences fit
natural statistics and ToM regions when they violate such statistics.
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