127 research outputs found

    Response of technical-biological bank protection to ship-generated wave actions – first results

    Get PDF
    River morphodynamics and sediment transportBank erosion and protectio

    Response of technical-biological bank protection to ship-generated wave actions - first results

    Get PDF
    River morphodynamics and sediment transportBank erosion and protectio

    Stereoelectronic effects on the binding of neutral Lewis bases to CdSe nanocrystals

    Get PDF
    Using P-31 nuclear magnetic resonance (NMR) spectroscopy, we monitor the competition between tri-nbutylphosphine (Bu3P) and various amine and phosphine ligands for the surface of chloride terminated CdSe nanocrystals. Distinct P-31 NMR signals for free and bound phosphine ligands allow the surface ligand coverage to be measured in phosphine solution. Ligands with a small steric profile achieve higher surface coverages (Bu3P = 0.5 nm(-2), Me2P-n-octyl = 2.0 nm(-2), NH2Bu = >3 nm(-2)) and have greater relative binding affinity for the nanocrystal (binding affinity: Me3P > Me2P -n-octyl similar to Me2P -n-octadecyl > Et3P > Bu3P). Among phosphines, only Bu 3 P and Me2P-n-octyl support a colloidal dispersion, allowing a relative surface binding affinity (K-rel) to be estimated in that case (K-rel = 3.1). The affinity of the amine ligands is measured by the extent to which they displace Bu3P from the nanocrystals (K-rel: H2NBu similar to N-n-butylimidazole > 4-ethylpyridine > Bu3P similar to HNBu2 > Me2NBu > Bu3N). The affinity for the CdSe surface is greatest among soft, basic donors and depends on the number of each ligand that bind. Sterically unencumbered ligands such as imidazole, pyridine, and n-alkylamines can therefore outcompete stronger donors such as alkylphosphines. The influence of repulsive interactions between ligands on the binding affinity is a consequence of the high atom density of binary semiconductor surfaces. The observed behavior is distinct from the self-assembly of straight-chain surfactants on gold and silver where the ligands are commensurate with the underlying lattice and attractive interactions between aliphatic chains strengthen the binding

    Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation

    Get PDF
    The eddy-covariance method provides the most direct estimates for fluxes between ecosystems and the atmosphere. However, dispersive fluxes can occur in the presence of secondary circulations, which can inherently not be captured by such single-tower measurements. In this study, we present options to correct local flux measurements for such large-scale transport based on a non-local parametric model that has been developed from a set of idealized large-eddy simulations. This method is tested for three real-world sites (DK-Sor, DE-Fen, and DE-Gwg), representing typical conditions in the mid-latitudes with different measurement heights, different terrain complexities, and different landscape-scale heterogeneities. Two ways to determine the boundary-layer height, which is a necessary input variable for modelling the dispersive fluxes, are applied, which are either based on operational radio soundings and local in situ measurements for the flat sites or from backscatter-intensity profiles obtained from co-located ceilometers for the two sites in complex terrain. The adjusted total fluxes are evaluated by assessing the improvement in energy balance closure and by comparing the resulting latent heat fluxes with evapotranspiration rates from nearby lysimeters. The results show that not only the accuracy of the flux estimates is improved but also the precision, which is indicated by RMSE values that are reduced by approximately 50 %. Nevertheless, it needs to be clear that this method is intended to correct for a bias in eddy-covariance measurements due to the presence of large-scale dispersive fluxes. Other reasons potentially causing a systematic underestimated or overestimation, such as low-pass filtering effects and missing storage terms, still need to be considered and minimized as much as possible. Moreover, additional transport induced by surface heterogeneities is not considered

    The use of rapid prototyped implants to simulate knee joint abnormalities for in vitro testing: a validation study with replica implants of the native trochlea

    Get PDF
    To investigate the biomechanical effect of skeletal knee joint abnormalities, the authors propose to implant pathologically shaped rapid prototyped implants in cadaver knee specimens. This new method was validated by replacing the native trochlea by a replica implant on four cadaver knees with the aid of cadaver-specific guiding instruments. The accuracy of the guiding instruments was assessed by measuring the rotational errors of the cutting planes (on average 3.01 degrees in extension and 1.18 degrees in external/internal rotation). During a squat and open chain simulation, the patella showed small differences in its articulation with the native trochlea and the replica trochlea, which could partially be explained by the rotational errors of the implants. This study concludes that this method is valid to investigate the effect of knee joint abnormalities with a replica implant as a control condition to account for the influence of material properties and rotational errors of the implant
    • …
    corecore