246 research outputs found

    Impact of sterile neutrinos on nuclear-assisted cLFV processes

    Get PDF
    We discuss charged lepton flavour violating processes occurring in the presence of muonic atoms, such as muon-electron conversion in nuclei CR(μ−e, N)\text{CR}(\mu -e, \text{ N}), the (Coulomb enhanced) decay of muonic atoms into a pair of electrons BR(μ−e−→e−e−\mu^- e^- \to e^- e^-, N), as well as Muonium conversion and decay, Mu−Muˉ\text{Mu}-\bar{\text{Mu}} and Mu→e+e−\text{Mu}\to e^+ e^-. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model. In this work, we consider minimal extensions of the Standard Model via the addition of sterile fermions, providing the corresponding complete analytical expressions for all the considered observables. We first consider an "ad hoc" extension with a single sterile fermion state, and investigate its impact on the above observables. Two well motivated mechanisms of neutrino mass generation are then considered: the Inverse Seesaw embedded into the Standard Model, and the ν\nuMSM. Our study reveals that, depending on their mass range and on the active-sterile mixing angles, sterile neutrinos can give significant contributions to the above mentioned observables, some of them even lying within present and future sensitivity of dedicated cLFV experiments. We complete the analysis by confronting our results to other (direct and indirect) searches for sterile fermions.Comment: 32 pages, 11 figures. v2: minor revision, matches published version on JHE

    Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay

    Full text link
    We address the impact of sterile fermion states on the anomalous magnetic moment of charged leptons, as well as their contribution to neutrinoless double beta decays. We illustrate our results in a minimal, effective extension of the Standard Model by one sterile fermion state, and in a well-motivated framework of neutrino mass generation, embedding the Inverse Seesaw into the Standard Model. The simple "3+1" effective case succeeds in alleviating the tension related to the muon anomalous magnetic moment, albeit only at the 3σ\sigma level, and for light sterile states (corresponding to a }cosmologically disfavoured regime). Interestingly, our analysis shows that a future 0ν2β0 \nu 2 \beta observation does not necessarily imply an inverted hierarchy for the active neutrinos in this simple extension. Although the Inverse Seesaw realisation here addressed could indeed ease the tension in (g−2)μ(g-2)_\mu, bounds from lepton universality in kaon decays mostly preclude this from happening. However, these scenarios can also have a strong impact on the interpretation of a future 0ν2β0 \nu 2 \beta signal regarding the hierarchy of the active neutrino mass spectrum.Comment: 25 pages, 19 figure

    Charged lepton flavour violation from low scale seesaw neutrinos

    Full text link
    In the work presented here, we have studied the impact of right handed neutrinos, which are introduced to account for the evidence of neutrino masses, on charged lepton flavour violating observables. In particular, we have focused on the loop induced decays of the Z boson into two leptons of different flavour. We have performed a numerical study of the rates predicted for these processes within the Inverse Seesaw model, specifically considering scenarios where μ−e \mu -e transitions are suppressed. Our conclusion, after comparison with the most relevant experimental constraints, is that branching ratios as large as 10−7 10^{-7} can be predicted in the τ−μ \tau -\mu or τ−e \tau -e channels, together with heavy neutrinos having masses of the TeV order. Such rates could be accessible at next generation colliders.Comment: 13 pages, 5 figures, 3 tables. Proceedings of the Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity", 31 August - 23 September 2016, Corfu, Greec
    • …
    corecore