130 research outputs found
Natural Isotopic Abundance 13C and 15N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization
International audienc
An Amyloid Organelle: Solid State NMR Evidence for Cross-Beta Assembly of Gas Vesicles
Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-β structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids.National Institutes of Health (U.S.) (grant EB001035)National Institutes of Health (U.S.) (grant EB003151)National Institutes of Health (U.S.) (grant EB002026
Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity
Graphene-based materials are extensively studied as promising candidates for supercapacitors (SCs) owing to the high surface area, electrical conductivity, and mechanical flexibility of graphene. Reduced graphene oxide (RGO), a close graphene-like material studied for SCs, offers limited specific capacitances (100 F·g–1) as the reduced graphene sheets partially restack through π–π interactions. This paper presents pillared graphene materials designed to minimize such graphitic restacking by cross-linking the graphene sheets with a bifunctional pillar molecule. Solid-state NMR, X-ray diffraction, and electrochemical analyses reveal that the synthesized materials possess covalently cross-linked graphene galleries that offer additional sites for ion sorption in SCs. Indeed, high specific capacitances in SCs are observed for the graphene materials synthesized with an optimized number of pillars. Specifically, the straightforward synthesis of a graphene hydrogel containing pillared structures and an interconnected porous network delivered a material with gravimetric capacitances two times greater than that of RGO (200 F·g–1vs 107 F·g–1) and volumetric capacitances that are nearly four times larger (210 F·cm–3vs 54 F·cm–3). Additionally, despite the presence of pillars inside the graphene galleries, the optimized materials show efficient ion transport characteristics. This work therefore brings perspectives for the next generation of high-performance SCs
Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP
The self-assembly of small organic molecules is an intriguing phenomenon, which provides nanoscale structures for applications in numerous fields from medicine to molecular electronics. Detailed knowledge of their structure, in particular on the supramolecular level, is a prerequisite for the rational design of improved self-assembled systems. In this work, we prove the feasibility of a novel concept of NMR-based 3D structure determination of such assemblies in the solid state. The key point of this concept is the deliberate use of samples that contain 13C at its natural isotopic abundance (NA, 1.1%), while exploiting magic-angle spinning dynamic nuclear polarization (MAS-DNP) to compensate for the reduced sensitivity. Since dipolar truncation effects are suppressed to a large extent in NA samples, unique and highly informative spectra can be recorded which are impossible to obtain on an isotopically labeled system. On the self-assembled cyclic diphenylalanine peptide, we demonstrate the detection of long-range internuclear distances up to ∼7 Å, allowing us to observe π-stacking through 13C–13C correlation spectra, providing a powerful tool for the analysis of one of the most important non-covalent interactions. Furthermore, experimental polarization transfer curves are in remarkable agreement with numerical simulations based on the crystallographic structure, and can be fully rationalized as the superposition of intra- and intermolecular contributions. This new approach to NMR crystallography provides access to rich and precise structural information, opening up a new avenue to de novo crystal structure determination by NMR
Hyperpolarization in Magnetic Resonance Special focus on High Field MAS Dynamic Nuclear Polarization
Heteronuclear decoupling in solid state nuclear magnetic resonance
LYON-ENS Sciences (693872304) / SudocSudocFranceF
Efficient 2D double-quantum solid-state NMR spectroscopy with large spectral widths
International audience2D double-quantum single-quantum correlation spectra with arbitrary spectral widths can be recorded with SR26 and related supercycled recoupling sequences when applying Supercycle-Timing-Compensation (STiC) phase shifts. This concept widely extends the applicability of supercycled sequences, most importantly for obtaining long-range distance constraints for structure determination with solid-state NMR
Direct spectral optimisation of proton–proton homonuclear dipolar decoupling in solid-state NMR
International audienc
Solvent signal suppression for high-resolution MAS-DNP
International audienc
- …