4 research outputs found

    The Full Spectrum Galactic Terrarium: MHz to TeV Observations of Various Critters

    Get PDF
    Multi-wavelength studies at radio, infrared, optical, X-ray, and TeV wavelengths have discovered probable counterparts to many Galactic sources of GeV emission detected by EGRET. These include pulsar wind nebulae, high mass X-ray binaries, and mixed morphology supernova remnants. Here we provide an overview of the observational properties of Galactic sources which emit across 19 orders of magnitude in energy. We also present new observations of several sources.Comment: 4 pages, 5 figures, Proceedings of the The 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, eds. Aharonian, Hofmann, Riege

    Multiwavelength study of quiescent states of MRK 421 with unprecedented hard x-ray coverage provided by<i> NuSTAR</i> in 2013

    Get PDF

    Science with the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document

    Science with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document
    corecore