6,545 research outputs found

    Biofortification: Effect of Iodine Fortified Food in the Healthy Population, Double-Arm Nutritional Study

    Get PDF
    It is estimated that one-third of the world’s population lives in areas where iodine (I) is scarce and its deficiency is responsible for many related disorders, such as goiter, reproductive failure, hearing loss, growth impairment, congenital I deficiency syndrome, and numerous kinds of brain injury. Mineral deficiencies can be overcome via dietary diversification and mineral supplementation. An alternative or even complementary way is represented by the intake of biofortified foods, which can tackle this lack of micronutrients. In this short-term double-arm nutritional intervention study, a cohort of ten people was supplemented with curly endive leaf biofortified with I and ten people with curly endive without biofortification (Intervention Study on Iodine Biofortification Vegetables (Nutri-I-Food – Full-Text View - ClinicalTrials.gov). The effects on whole-body homeostasis and specifically on I, glucose, lipid, and hepatic, iron metabolism was investigated. Blood samples were obtained at baseline and after 12 days of supplementation with curly endive and compared with controls. Hematochemical and urinary parameters were analyzed at baseline and after 12 days. The results showed that short-term I curly endive intervention did not affect the whole body homeostasis in healthy people and revealed an increase in I concentration in urine samples and an increase in vitamin D, calcium, and potassium concentration in blood samples only in the biofortified cohort respect to controls. This study suggests that short-term consumption of I curly endive crops is safe and could positively impact body health

    Machine Learning algorithm unveils glutamatergic alterations in the post-mortem schizophrenia brain

    Get PDF
    Schizophrenia is a disorder of synaptic plasticity and aberrant connectivity in which a major dysfunction in glutamate synapse has been suggested. However, a multi-level approach tackling diverse clusters of interacting molecules of the glutamate signaling in schizophrenia is still lacking. We investigated in the post-mortem dorsolateral prefrontal cortex (DLPFC) and hippocampus of schizophrenia patients and non-psychiatric controls, the levels of neuroactive d- and l-amino acids (l-glutamate, d-serine, glycine, l-aspartate, d-aspartate) by HPLC. Moreover, by quantitative RT-PCR and western blotting we analyzed, respectively, the mRNA and protein levels of pre- and post-synaptic key molecules involved in the glutamatergic synapse functioning, including glutamate receptors (NMDA, AMPA, metabotropic), their interacting scaffolding proteins (PSD-95, Homer1b/c), plasma membrane and vesicular glutamate transporters (EAAT1, EAAT2, VGluT1, VGluT2), enzymes involved either in glutamate-dependent GABA neurotransmitter synthesis (GAD65 and 67), or in post-synaptic NMDA receptor-mediated signaling (CAMKIIα) and the pre-synaptic marker Synapsin-1. Univariable analyses revealed that none of the investigated molecules was differently represented in the post-mortem DLPFC and hippocampus of schizophrenia patients, compared with controls. Nonetheless, multivariable hypothesis-driven analyses revealed that the presence of schizophrenia was significantly affected by variations in neuroactive amino acid levels and glutamate-related synaptic elements. Furthermore, a Machine Learning hypothesis-free unveiled other discriminative clusters of molecules, one in the DLPFC and another in the hippocampus. Overall, while confirming a key role of glutamatergic synapse in the molecular pathophysiology of schizophrenia, we reported molecular signatures encompassing elements of the glutamate synapse able to discriminate patients with schizophrenia and normal individuals

    Machine Learning algorithm unveils glutamatergic alterations in the post-mortem schizophrenia brain

    Get PDF
    Schizophrenia is a disorder of synaptic plasticity and aberrant connectivity in which a major dysfunction in glutamate synapse has been suggested. However, a multi-level approach tackling diverse clusters of interacting molecules of the glutamate signaling in schizophrenia is still lacking. We investigated in the post-mortem dorsolateral prefrontal cortex (DLPFC) and hippocampus of schizophrenia patients and non-psychiatric controls, the levels of neuroactive d- and l-amino acids (l-glutamate, d-serine, glycine, l-aspartate, d-aspartate) by HPLC. Moreover, by quantitative RT-PCR and western blotting we analyzed, respectively, the mRNA and protein levels of pre- and post-synaptic key molecules involved in the glutamatergic synapse functioning, including glutamate receptors (NMDA, AMPA, metabotropic), their interacting scaffolding proteins (PSD-95, Homer1b/c), plasma membrane and vesicular glutamate transporters (EAAT1, EAAT2, VGluT1, VGluT2), enzymes involved either in glutamate-dependent GABA neurotransmitter synthesis (GAD65 and 67), or in post-synaptic NMDA receptor-mediated signaling (CAMKIIα) and the pre-synaptic marker Synapsin-1. Univariable analyses revealed that none of the investigated molecules was differently represented in the post-mortem DLPFC and hippocampus of schizophrenia patients, compared with controls. Nonetheless, multivariable hypothesis-driven analyses revealed that the presence of schizophrenia was significantly affected by variations in neuroactive amino acid levels and glutamate-related synaptic elements. Furthermore, a Machine Learning hypothesis-free unveiled other discriminative clusters of molecules, one in the DLPFC and another in the hippocampus. Overall, while confirming a key role of glutamatergic synapse in the molecular pathophysiology of schizophrenia, we reported molecular signatures encompassing elements of the glutamate synapse able to discriminate patients with schizophrenia and normal individuals

    Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post‐Mortem Brain of Schizophrenia, Parkinson’s and Alzheimer’s Disease Patients

    Get PDF
    Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin‐binding protein cyclase‐associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post‐mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non‐psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies

    Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post‐Mortem Brain of Schizophrenia, Parkinson’s and Alzheimer’s Disease Patients

    Get PDF
    Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin‐binding protein cyclase‐associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post‐mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non‐psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies

    How to improve educational behaviors for caregivers and patients having Central Venous Access Device (CVAD). a scoping review

    Get PDF
    Objective: Central venous access devices (CVADs) are essential to the modern management of patients with hematological malignancies and solid tumors. Educational programs play a crucial role in promoting appropriate patient actions to support patient safety during hospitalization and homecare. This review aimed to identify literature concerning educational interventions to promote patients’ actions to overcome CVAD-related problems and improve self-monitoring and self-management. Materials and Methods: Documentary evaluation of international databases, such as PubMed, CINAHL, Scopus and Cochrane. Searching for data on population, context and concept regarding CVAD self-management. The extracted data was subject to thematic analysis. The following scoping reviews were developed using the five-stage framework outlined by Arksey and O’Malley, and advanced by Levac and colleagues. Results: Of the 2802 articles identified, 19 research articles were selected in this review. Educational programs have been shown to improve CVAD self management, to decrease stress and anxiety related to their use, and to reduce the onset of complications. In addition, nurses have proven to be the professional reference figure for educational interventions. Conclusions: The results of the study lead to the conclusion that programs aimed at improving selfcare and reducing the onset of complications in patients living with chronic and debilitating diseases should be made available to a larger portion of individuals. Both generic and specific programs are needed, in the different contexts of home and hospital, for the short and long term, in order to ameliorate participants’ abilities. The results of this study should, therefore, encourage health professionals to plan, carry out, and evaluate the establishment of educational programs with patient participation
    • 

    corecore