72 research outputs found

    Integrable multi-phase thermodynamic systems and Tsallis' composition rule

    Get PDF
    We derive a class of equations of state for a multi-phase thermodynamic system associated with a finite set of order parameters that satisfy an integrable system of hydrodynamic type. As particular examples, we discuss one-phase systems such as the van der Waals gas and the effective molecular field model. The case of N–phase systems is also discussed in detail in connection with entropies depending on the order parameter according to Tsallis' composition rule

    Cocirculation of Hajj and non-Hajj strains among serogroup W meningococci in Italy, 2000 to 2016

    Get PDF
    In Italy, B and C are the predominant serogroups among meningococci causing invasive diseases. Nevertheless, in the period from 2013 to 2016, an increase in serogroup W Neisseria meningitidis (MenW) was observed. This study intends to define the main characteristics of 63 MenW isolates responsible of invasive meningococcal disease (IMD) in Italy from 2000 to 2016. We performed whole genome sequencing on bacterial isolates or single gene sequencing on culturenegative samples to evaluate molecular heterogeneity. Our main finding was the cocirculation of the Hajj and the South American sublineages belonging to MenW/ clonal complex (cc)11, which gradually surpassed the MenW/cc22 in Italy. All MenW/cc11 isolates were fully susceptible to cefotaxime, ceftriaxone, ciprofloxacin, penicillin G and rifampicin. We identified the fulllength NadA protein variant 2/3, present in all the MenW/cc11. We also identified the fHbp variant 1, which we found exclusively in the MenW/cc11/Hajj sublineage. Concern about the epidemic potential of MenW/cc11 has increased worldwide since the year 2000. Continued surveillance, supported by genomic characterisation, allows high-resolution tracking of pathogen dissemination and the detection of epidemicassociated strains

    HDAC6 mediates the acetylation of TRIM50

    Get PDF
    The E3 Ubiquitin ligase TRIM50 promotes the formation and clearance of aggresome-associated polyubiquitinated proteins through HDAC6 interaction, a tubulin specific deacetylase that regulates microtubule-dependent aggresome formation. In this report we showed that TRIM50 is a target of HDAC6 with Lys-372 as a critical residue for acetylation. We identified p300 and PCAF as two TRIM50 acetyltransferases and we further showed that a balance between ubiquitination and acetylation regulates TRIM50 degradatio

    Semi- and Non-relativistic Limit of the Dirac Dynamics with External Fields

    Full text link
    We show how to approximate Dirac dynamics for electronic initial states by semi- and non-relativistic dynamics. To leading order, these are generated by the semi- and non-relativistic Pauli hamiltonian where the kinetic energy is related to m2+Ο2\sqrt{m^2 + \xi^2} and Ο2/2m\xi^2 / 2m, respectively. Higher-order corrections can in principle be computed to any order in the small parameter v/c which is the ratio of typical speeds to the speed of light. Our results imply the dynamics for electronic and positronic states decouple to any order in v/c << 1. To decide whether to get semi- or non-relativistic effective dynamics, one needs to choose a scaling for the kinetic momentum operator. Then the effective dynamics are derived using space-adiabatic perturbation theory by Panati et. al with the novel input of a magnetic pseudodifferential calculus adapted to either the semi- or non-relativistic scaling.Comment: 42 page

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter Δâ‰Ș1\varepsilon\ll 1 controls the separation of time scales and the limit Δ→0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time Δ→0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the Δ\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an Δ\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order Δ2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess-Zumino, and Fu-Kane-Mele

    Full text link
    We establish a connection between two recently-proposed approaches to the understanding of the geometric origin of the Fu-Kane-Mele invariant FKM∈Z2\mathrm{FKM} \in \mathbb{Z}_2, arising in the context of 2-dimensional time-reversal symmetric topological insulators. On the one hand, the Z2\mathbb{Z}_2 invariant can be formulated in terms of the Berry connection and the Berry curvature of the Bloch bundle of occupied states over the Brillouin torus. On the other, using techniques from the theory of bundle gerbes it is possible to provide an expression for FKM\mathrm{FKM} containing the square root of the Wess-Zumino amplitude for a certain U(N)U(N)-valued field over the Brillouin torus. We link the two formulas by showing directly the equality between the above mentioned Wess-Zumino amplitude and the Berry phase, as well as between their square roots. An essential tool of independent interest is an equivariant version of the adjoint Polyakov-Wiegmann formula for fields T2→U(N)\mathbb{T}^2 \to U(N), of which we provide a proof employing only basic homotopy theory and circumventing the language of bundle gerbes.Comment: 23 pages, 1 figure. To appear in Letters in Mathematical Physic

    A relocatable ocean model in support of environmental emergencies

    Get PDF
    During the Costa Concordia emergency case, regional, subregional, and relocatable ocean models have been used together with the oil spill model, MEDSLIK-II, to provide ocean currents forecasts, possible oil spill scenarios, and drifters trajectories simulations. The models results together with the evaluation of their performances are presented in this paper. In particular, we focused this work on the implementation of the Interactive Relocatable Nested Ocean Model (IRENOM), based on the Harvard Ocean Prediction System (HOPS), for the Costa Concordia emergency and on its validation using drifters released in the area of the accident. It is shown that thanks to the capability of improving easily and quickly its configuration, the IRENOM results are of greater accuracy than the results achieved using regional or subregional model products. The model topography, and to the initialization procedures, and the horizontal resolution are the key model settings to be configured. Furthermore, the IRENOM currents and the MEDSLIK-II simulated trajectories showed to be sensitive to the spatial resolution of the meteorological fields used, providing higher prediction skills with higher resolution wind forcing.MEDESS4MS Project; TESSA Project; MyOcean2 Projectinfo:eu-repo/semantics/publishedVersio

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome

    Get PDF
    BACKGROUND: Pathogenic variants of GNB5 encoding the ÎČ5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening

    Epidemiology and drug susceptibility of nontuberculous mycobacteria (NTM) in Italy in 2016-2020

    Get PDF
    Introduction. Nontuberculous mycobacteria (NTM) are environmental mycobacteria which may cause pulmonary and extrapulmonary diseases. These organisms are difficult to treat due to their intrinsic drug-resistance. In Italy, no major nationwide study on NTM epidemiology and drug susceptibility was performed. Methods. Data on the epidemiology of 7,469 NTM clinical isolates identified in Italy in 2016-2020 and on the minimum inhibitory concentrations (MICs) of 1,506 of these strains were analysed. Results. Overall, 63 species were identified in 42 hospital laboratories located in 16 out of 20 regions, with Mycobacterium avium complex (MAC) being the most frequently iso-lated, followed by M. gordonae, M. xenopi, M. abscessus. The MICs of 12 drugs for MAC, M. xenopi, M. kansasii, M. abscessus, M. fortuitum and M. chelonae were interpreted for clinical significance (susceptible, intermediate, resistant) based on the guidelines pub-lished by the Clinical and Laboratory Standards Institute in November 2018. Conclusions. Our data are in line with other nationwide studies and may be of value for further update of microbiological and clinical guidelines
    • 

    corecore