680 research outputs found

    A crucial role for the cortico-striato-cortical loop in the pathogenesis of stroke-related neurogenic stuttering

    Get PDF
    Neurogenic stuttering is an acquired speech disorder characterized by the occurrence of stuttering-like dysfluencies following brain damage. Because the onset of stuttering in these patients is associated with brain lesions, this condition provides a unique opportunity to study the neural processes underlying speech dysfluencies. Lesion localizations of 20 stroke subjects with neurogenic stuttering and 17 control subjects were compared using voxel-based lesion symptom mapping. The results showed nine left-hemisphere areas associated with the presen ce of neurogenic stuttering. These areas were largely overlapping with the cortico-basal ganglia-cortical network comprising the inferior frontal cortex, superior temporal cortex, intraparietal cortex, basal ganglia, and their white matter interconnections through the superior longitudinal fasciculus and internal capsule. These results indicated that stroke-induced neurogenic stuttering is not associated with neural dysfunction in one specific brain area but can occur following one or more lesion throughout the cortico-basal ganglia-cortical network. It is suggested that the onset of neurogenic stuttering in stroke subjects results from a disintegration of neural functions necessary for fluent speech. Β© 2012 Wiley Periodicals, Inc

    Ontwikkeling van stotteren: Inleiding tot een praktijkmodel

    Get PDF
    Dit artikel is de inleiding op het direct hierna volgende (Oonk e.a. 2022) waar een nieuw praktijkmodel over het ontstaan en ontwikkeling van stotteren wordt voorgesteld. In de dagelijkse praktijk van vooral Nederlandstalige logopedisten (-stottertherapeuten) is tot nu toe veel gebruik gemaakt van het klinische werkmodel van Bertens (1994; 2017). Dit model gaat uit van een primaire neuromusculaire timingsstoornis, welke zich niet alleen uit in het spreken, maar ook in algemene zin aanwezig is. Dit model echter, is aan revisie toe. Volgens de recente literatuur is de algemene aard van die timingstoornis niet bewezen, en zijn er veel vroegere (meer primaire) factoren aantoonbaar van belang bij het ontstaan van stotteren, met name in de genetica en in de neurologie. In dit artikel wordt deze literatuur kort samengevat, alsmede worden enkele recente modellen omschreven. Met name regulatie en terugkoppeling krijgen in recente modellen meer aandacht. Er is geen volledigheid nagestreefd, maar dit artikel is meer een tutoriale opmaat voor het hierna te presenteren model. (This article serves as an introduction to the accompanying paper, in which a new clinical model of the origin and development of stuttering is presented (Oonk e.a., 2022). In their clinical practice, Dutch speech language pathologists still tend to use the clinical model proposed by Bertens (1994; 2017). This model explains stuttering as de- veloping from a primary neuromuscular timing deficit, which manifests itself not only in speech, but in more general behaviour as well. In our opinion, this model needs to be updated and revised based on current scientific and clinical knowledge. There is littleevidence for the general timing deficit in Bertens’ model and, moreover, several more fundamental factors, especially those related to genetics and neural processes, that have an important role in the onset of stuttering have been reported. This paper provides a review and summary of these recent data, and several newer models are described. An important aspect of these models is the importance given to processes of regulation and feedback. An exhaustive overview of the existing literature has not been strived for but it is hoped that this paper will serve as a useful introduction to the clinical model presented in the accompanying paper.

    Brain activation during non-habitual speech production: Revisiting the effects of simulated disfluencies in fluent speakers

    Get PDF
    Over the past decades, brain imaging studies in fluently speaking participants have greatly advanced our knowledge of the brain areas involved in speech production. In addition, complementary information has been provided by investigations of brain activation patterns associated with disordered speech. In the present study we specifically aimed to revisit and expand an earlier study by De Nil and colleagues, by investigating the effects of simulating disfluencies on the brain activation patterns of fluent speakers during overt and covert speech production. In contrast to the De Nil et al. study, the current findings show that the production of voluntary, self-generated disfluencies by fluent speakers resulted in increased recruitment and activation of brain areas involved in speech production. These areas show substantial overlap with the neural networks involved in motor sequence learning in general, and learning of speech production, in particular. The implications of these findings for the interpretation of brain imaging studies on disordered and non-habitual speech production are discussed

    Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host

    Get PDF
    Host shift events play an important role in epizootics as adaptation to new hosts can profoundly affect the spread of the disease and the measures needed to control it. During the late 1990s, an epizootic in Turkey resulted in a sustained maintenance of rabies virus (RABV) within the fox population. We used Bayesian inferences to investigate whole genome sequences from fox and dog brain tissues from Turkey to demonstrate that the epizootic occurred in 1997 (Β±1 year). Furthermore, these data indicated that the epizootic was most likely due to a host shift from locally infected domestic dogs, rather than an incursion of a novel fox or dog RABV. No evidence was observed for genetic adaptation to foxes at consensus sequence level and dN/dS analysis suggested purifying selection. Therefore, the deep sequence data were analysed to investigate the sub-viral population during a host shift event. Viral heterogeneity was measured in all RABV samples; viruses from the early period after the host shift exhibited greater sequence variation in comparison to those from the later stage, and to those not involved in the host shift event, possibly indicating a role in establishing transmission within a new host. The transient increase in variation observed in the new host species may represent virus replication within a new environment, perhaps due to increased replication within the CNS, resulting in a larger population of viruses, or due to the lack of host constraints present in the new host reservoir

    Pharmacological validation of targets regulating CD14 during macrophage differentiation

    Get PDF
    The signalling receptor for LPS, CD14, is a key marker of, and facilitator for, pro-inflammatory macrophage function. Pro-inflammatory macrophage differentiation remains a process facilitating a broad array of disease pathologies, and has recently emerged as a potential target against cytokine storm in COVID19. Here, we perform a whole-genome CRISPR screen to identify essential nodes regulating CD14 expression in myeloid cells, using the differentiation of THP-1 cells as a starting point. This strategy uncovers many known pathways required for CD14 expression and regulating macrophage differentiation while additionally providing a list of novel targets either promoting or limiting this process. To speed translation of these results, we have then taken the approach of independently validating hits from the screen using well-curated small molecules. In this manner, we identify pharmacologically tractable hits that can either increase CD14 expression on non-differentiated monocytes or prevent CD14 upregulation during macrophage differentiation. An inhibitor for one of these targets, MAP2K3, translates through to studies on primary human monocytes, where it prevents upregulation of CD14 following M-CSF induced differentiation, and pro-inflammatory cytokine production in response to LPS. Therefore, this screening cascade has rapidly identified pharmacologically tractable nodes regulating a critical disease-relevant process

    The effects of financialisation and financial development on investment: Evidence from firm-level data in Europe

    Get PDF
    In this paper we estimate the effects of financialization on physical investment in selected western European countries using panel data based on the balance-sheets of publicly listed non-financial companies (NFCs) supplied by Worldscope for the period 1995-2015. We find robust evidence of an adverse effect of both financial payments (interests and dividends) and financial incomes on investment in fixed assets by the NFCs. This finding is robust for both the pool of all Western European firms and single country estimations. The negative impacts of financial incomes are non-linear with respect to the companies’ size: financial incomes crowd-out investment in large companies, and have a positive effect on the investment of only small, relatively more credit-constrained companies. Moreover, we find that a higher degree of financial development is associated with a stronger negative effect of financial incomes on companies’ investment. This finding challenges the common wisdom on β€˜finance-growth nexus’. Our findings support the β€˜financialization thesis’ that the increasing orientation of the non-financial sector towards financial activities is ultimately leading to lower physical investment, hence to stagnant or fragile growth, as well as long term stagnation in productivity

    MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size

    Get PDF
    Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-coding RNAs known to play a role in human brain development and neurogenesis. Here, we performed small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, measured 907 expressed miRNAs, discovering 111 of which were novel, and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707–3p expression with educational attainment and brain size phenotypes, where the miRNA expression increasing allele was associated with decreased brain size. Exogenous expression of miR-4707–3p in primary human neural progenitor cells decreased expression of predicted targets and increased cell proliferation, indicating miR-4707–3p modulates progenitor gene regulation and cell fate decisions. Integrating miRNA-eQTLs with existing GWAS yielded evidence of a miRNA that may influence human brain size and function via modulation of neocortical brain development

    miniBELEN: a modular neutron counter for (a, n) reactions

    Get PDF
    miniBELEN is a modular and transportable neutron moderated counter with a nearly flat neutron detection efficiency up to 10 MeV. Modularity implies that the moderator can be reassembled in different ways in order to obtain different types of response. The detector has been developed in the context of the Measurement of Alpha Neutron Yields (MANY) collaboration, which is a scientific effort aiming to carry out measurements of (a, n) production yields, reaction cross-sections and neutron energy spectra. In this work we present and discuss several configurations of the miniBELEN detector. The experimental validation of the efficiency calculations using 252Cf sources and the measurement of the 27Al(a, n) 30P reaction is also presented.This work has been supported by the Spanish Ministerio de Economía y Competitividad under grants FPA2017-83946- C2-1 & C2-2 and PID2019-104714GB-C21 & C22, the Generalitat Valenciana Grant PROMETEO/2019/007, both cofounded by FEDER (EU), and the SANDA project funded under H2020-EURATOM-1.1 Grant No. 847552. The authors acknowledge the support from Centro de MicroanÑlisis de Materiales (CMAM) - Universidad Autónoma de Madrid, for the beam time proposal (Comissioning of neutron detector systems for (a,݊n) reaction measurements) with code P01156, and its technical staff for their contribution to the operation of the accelerator.Article signat per 41 autors/es: N. Mont-Geli, A. Tarifeño-Saldivia, L.M. Fraile, S. Viñals, A. Perea, M. Pallàs, G. Cortés, E. NÑcher, J.L. Tain, V. Alcayne, A. Algora, J. Balibrea-Correa, J. Benito, M.J.G. Borge, J.A. Briz, F. Calviño, D. Cano-Ott, A. De Blas, C. Domingo-Pardo, B. FernÑndez, R. Garcia, G. García, J. Gómez-Camacho, E.M. GonzÑlez-Romero, C. Guerrero, J. Lerendegui-Marco, M. Llanos, T. Martínez, E. Mendoza, J.R. Murias, S.E.A. Orrigo, A. Pérez de Rada, V. Pesudo, J. Plaza, J.M. Quesada, A. SÑnchez, V. SÑnchez-Tembleque, R. Santorelli, O. Tengblad, J.M. Udías and D. Villamarín.Postprint (published version

    Resting-State Brain Activity in Adult Males Who Stutter

    Get PDF
    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them

    Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    Get PDF
    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [Ξ΅]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (~150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands
    • …
    corecore