982 research outputs found

    Low loss GaN waveguides for visible light on Si substrates

    Get PDF
    International audienceIn this work, we present the realization and the characterization of an optical waveguide made of AlN and GaN layers grown by MBE on Si(111) substrate. For the fundamental mode at 633nm, the propagation losses are in the order of 2 dB/cm, which is a good number for SC waveguides at this wavelength. The propagation losses dramatically increase with the mode order. A careful comparison of measurements and modeling of the complete structure allows identifying the part of the losses due to absorptionin the Si substrate, and showing that propagation losses could be further reduced by using well chosen SOI substrates

    Towards Nonlinear Photonic Wires in Z-cut LiNbO3

    Get PDF
    International audienceUsing a modified Proton Exchange process we have realized Photonic Wires in X-cut LiNbO3. They exhibit highly confined mode, low propagation losses, low strain induced polarization coupling and no reduction of the nonlinear properties. We are now transferring this technique to Z-cut LiNbO3 in order to realize very efficient nonlinear devices in PPLN

    Quantum optical frequency up-conversion for polarisation entangled qubits: towards interconnected quantum information devices

    Full text link
    Realising a global quantum network requires combining individual strengths of different quantum systems to perform universal tasks, notably using flying and stationary qubits. However, transferring coherently quantum information between different systems is challenging as they usually feature different properties, notably in terms of operation wavelength and wavepacket. To circumvent this problem for quantum photonics systems, we demonstrate a polarisation-preserving quantum frequency conversion device in which telecom wavelength photons are converted to the near infrared, at which a variety of quantum memories operate. Our device is essentially free of noise which we demonstrate through near perfect single photon state transfer tomography and observation of high-fidelity entanglement after conversion. In addition, our guided-wave setup is robust, compact, and easily adaptable to other wavelengths. This approach therefore represents a major building block towards advantageously connecting quantum information systems based on light and matter.Comment: 8 pages, 4 figure

    Towards the simulation of the whole manufacturing chain processes with FORGE®

    No full text
    International audienceFollowing the metal composition and the microstructure evolution during the whole manufacturing chain is becoming a key point in the metal forming industry to better understand the processes and reach the increasing quality requirements for the parts. Thus, providing a simulation tool able to model the whole chain becomes critical. Physical phenomena occurring during the processes are nowadays better understood, providing always more relevant models for numerical simulation. However, important numerical challenges still exist in order to be able to run those simulations with the required accuracy. This article shows how FORGE® tackles those issues in order to provide highly accurate microstructure and surface treatments simulation features applied on real industrial processes

    Modes Hybrides dans les Fils Quantiques Réalisés sur Niobate de Lithium en Coupe X

    Get PDF
    Dans ce papier, nous nous concentrerons sur l'influence des contraintes induites dans le cristal par le processus de fabrication des fils quantiques. Ces tensions sont responsables d'un couplage fort entre les polarisations qui confère une nature hybride aux modes se propageant et qui doit être prise en considération dans la conception des dispositifs

    Up-conversion detectors at 1550 nm for quantum communication: review and recent advances

    Get PDF
    International audienceUp-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ2\chi^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported.
The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise. The poled waveguides are designed to up-convert single photons at 1550 nm to 600 nm when a 980 nm diode laser is used as pump. We obtain an overall efficiency of about 0.6% for a noise level of about 8×1038\times 10^3 counts/s. This overall efficiency includes both insertion and propagation losses, and internal up-conversion and quantum detection (Si-APD) efficiencies. Despite a low efficiency value compared to what has been obtained so far by other groups, the efficiency/noise ratio is still comparable which still allows us investigating the noise issue. 
From the spectrum obtained in both poled and non-poled waveguides we conclude that the noise comes from an alternative phase-matching scheme which permits creating paired photons at 1550 and 2700 nm wavelength by down-conversion of the 980 nm pump laser. Knowing that 1550 nm corresponds to the input signal wavelength, up-conversion of actual signal or pump-induced photons at this particular wavelength cannot be discriminated, therefore contributing to the noise at the final wavelength of 600 nm. We believe that this process of down-conversion of the pump laser to the signal wavelength (plus complementary wavelength) is responsible for the unexpected noise level reported in all the up-conversion detector realizations

    Quantum photonics at telecom wavelengths based on lithium niobate waveguides

    Get PDF
    International audienceIntegrated optical components on lithium niobate play a major role in standard high-speed communication systems. Over the last two decades, after the birth and positioning of quantum information science, lithium niobate waveguide architectures have emerged as one of the key platforms for enabling photonics quantum technologies. Due to mature technological processes for waveguide structure integration, as well as inherent and efficient properties for nonlinear optical effects, lithium niobate devices are nowadays at the heart of many photon-pair or triplet sources, single-photon detectors, coherent wavelength-conversion interfaces, and quantum memories. Consequently, they find applications in advanced and complex quantum communication systems, where compactness, stability, efficiency, and interconnectability with other guided-wave technologies are required. In this review paper, we first introduce the material aspects of lithium niobate, and subsequently discuss all of the above mentioned quantum components, ranging from standard photon-pair sources to more complex and advanced circuits
    • …
    corecore