1,460 research outputs found

    Suspension cultures of mononuclear phagocytes in the Teflon culture bag

    Get PDF
    Contains fulltext : 4302.pdf (publisher's version ) (Open Access

    Could SGLT2 Inhibitors Improve Exercise Intolerance in Chronic Heart Failure?

    Get PDF
    Despite the constant improvement of therapeutical options, heart failure (HF) remains associated with high mortality and morbidity. While new developments in guideline-recommended therapies can prolong survival and postpone HF hospitalizations, impaired exercise capacity remains one of the most debilitating symptoms of HF. Exercise intolerance in HF is multifactorial in origin, as the underlying cardiovascular pathology and reactive changes in skeletal muscle composition and metabolism both contribute. Recently, sodium-related glucose transporter 2 (SGLT2) inhibitors were found to improve cardiovascular outcomes significantly. Whilst much effort has been devoted to untangling the mechanisms responsible for these cardiovascular benefits of SGLT2 inhibitors, little is known about the effect of SGLT2 inhibitors on exercise performance in HF. This review provides an overview of the pathophysiological mechanisms that are responsible for exercise intolerance in HF, elaborates on the potential SGLT2-inhibitor-mediated effects on these phenomena, and provides an up-to-date overview of existing studies on the effect of SGLT2 inhibitors on clinical outcome parameters that are relevant to the assessment of exercise capacity. Finally, current gaps in the evidence and potential future perspectives on the effects of SGLT2 inhibitors on exercise intolerance in chronic HF are discussed

    A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport

    Full text link
    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density SI(f)S_I (f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher ff, there is a crossover to a broad range of frequencies in which SI(f)S_I (f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor F\equiv S_I(f)/2e \left. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F=1), scaling with the length LL of the conductor as F=(Lc/L)αF = (L_c / L)^{\alpha}. The exponent α\alpha is significantly affected by the Coulomb interaction effects, changing from α=0.76±0.08\alpha = 0.76 \pm 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter LcL_c, interpreted as the average percolation cluster length along the electric field direction, scales as LcE(0.98±0.08)L_c \propto E^{-(0.98 \pm 0.08)} when Coulomb interaction effects are negligible and LcE(1.26±0.15)L_c \propto E^{-(1.26 \pm 0.15)} when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference

    Sub-electron Charge Relaxation via 2D Hopping Conductors

    Full text link
    We have extended Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the process of external charge relaxation. In this situation, a conductor of area L×WL \times W shunts an external capacitor CC with initial charge QiQ_i. At low temperatures, the charge relaxation process stops at some "residual" charge value corresponding to the effective threshold of the Coulomb blockade of hopping. We have calculated the r.m.s.. value QRQ_R of the residual charge for a statistical ensemble of capacitor-shunting conductors with random distribution of localized sites in space and energy and random QiQ_i, as a function of macroscopic parameters of the system. Rather unexpectedly, QRQ_{R} has turned out to depend only on some parameter combination: X0LWν0e2/CX_0 \equiv L W \nu_0 e^2/C for negligible Coulomb interaction and XχLWκ2/C2X_{\chi} \equiv LW \kappa^2/C^{2} for substantial interaction. (Here ν0\nu_0 is the seed density of localized states, while κ\kappa is the dielectric constant.) For sufficiently large conductors, both functions QR/e=F(X)Q_{R}/e =F(X) follow the power law F(X)=DXβF(X)=DX^{-\beta}, but with different exponents: β=0.41±0.01\beta = 0.41 \pm 0.01 for negligible and β=0.28±0.01\beta = 0.28 \pm 0.01 for significant Coulomb interaction. We have been able to derive this law analytically for the former (most practical) case, and also explain the scaling (but not the exact value of the exponent) for the latter case. In conclusion, we discuss possible applications of the sub-electron charge transfer for "grounding" random background charge in single-electron devices.Comment: 12 pages, 5 figures. In addition to fixing minor typos and updating references, the discussion has been changed and expande

    Bio-psycho-social factors’ associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants

    Get PDF
    Brain age refers to age predicted by brain features. Brain age has previously been associated with various health and disease outcomes and suggested as a potential biomarker of general health. Few previous studies have systematically assessed brain age variability derived from single and multi-shell diffusion magnetic resonance imaging data. Here, we present multivariate models of brain age derived from various diffusion approaches and how they relate to bio-psycho-social variables within the domains of sociodemographic, cognitive, life-satisfaction, as well as health and lifestyle factors in midlife to old age (N = 35,749, 44.6–82.8 years of age). Bio-psycho-social factors could uniquely explain a small proportion of the brain age variance, in a similar pattern across diffusion approaches: cognitive scores, life satisfaction, health and lifestyle factors adding to the variance explained, but not socio-demographics. Consistent brain age associations across models were found for waist-to-hip ratio, diabetes, hypertension, smoking, matrix puzzles solving, and job and health satisfaction and perception. Furthermore, we found large variability in sex and ethnicity group differences in brain age. Our results show that brain age cannot be sufficiently explained by bio-psycho-social variables alone. However, the observed associations suggest to adjust for sex, ethnicity, cognitive factors, as well as health and lifestyle factors, and to observe bio-psycho-social factor interactions’ influence on brain age in future studies.publishedVersio

    Elastic constants of nematic liquid crystals of uniaxial symmetry

    Full text link
    We study in detail the influence of molecular interactions on the Frank elastic constants of uniaxial nematic liquid crystals composed of molecules of cylindrical symmetry. A brief summary of the status of theoretical development for the elastic constants of nematics is presented. Considering a pair potential having both repulsive and attractive parts numerical calculations are reported for three systems MBBA, PAA and 8OCB. For these systems the length-to-width ratio x0{x_0} is estimated from the experimentally proposed structure of the molecules. The repulsive interaction is represented by a repulsion between hard ellipsoids of revolution (HER) and the attractive potential is represented by the quadrupole and dispersion interactions. From the numerical results we observe that in the density range of nematics the contribution of the quadrupole and dispersion interactions are small as compared to the repulsive HER interaction. The inclusion of attractive interaction reduces the values of elastic constants ratios. The temperature variation of elastic constants ratios are reported and compared with the experimental values. A reasonably good agreement between theory and experiment is observed

    Sample of Dutch FADN 2009-2010. Design principles and quality of the sample of agricultural and horticultural holdings

    Get PDF
    Steekproef Bedrijven-Informatienet 2009-2010. Ontwerpprincipes en kwaliteit van de steekproef onder land- en tuinbouwbedrijven

    Domain Walls in Two-Component Dynamical Lattices

    Full text link
    We introduce domain-wall (DW) states in the bimodal discrete nonlinear Schr{\"{o}}dinger equation, in which the modes are coupled by cross phase modulation (XPM). By means of continuation from various initial patterns taken in the anti-continuum (AC) limit, we find a number of different solutions of the DW type, for which different stability scenarios are identified. In the case of strong XPM coupling, DW configurations contain a single mode at each end of the chain. The most fundamental solution of this type is found to be always stable. Another solution, which is generated by a different AC pattern, demonstrates behavior which is unusual for nonlinear dynamical lattices: it is unstable for small values of the coupling constant CC (which measures the ratio of the nonlinearity and coupling lengths), and becomes stable at larger CC. Stable bound states of DWs are also found. DW configurations generated by more sophisticated AC patterns are identified as well, but they are either completely unstable, or are stable only at small values of CC. In the case of weak XPM, a natural DW solution is the one which contains a combination of both polarizations, with the phase difference between them 0 and π\pi at the opposite ends of the lattice. This solution is unstable at all values of CC, but the instability is very weak for large CC, indicating stabilization as the continuum limit is approached. The stability of DWs is also verified by direct simulations, and the evolution of unstable DWs is simulated too; in particular, it is found that, in the weak-XPM system, the instability may give rise to a moving DW.Comment: 14 pages, 14 figures, Phys. Rev. E (in press
    corecore