108 research outputs found

    Function and dysfunction of the PI system in membrane trafficking

    Get PDF
    The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes

    Tuberculous Arthritis of the Ankle

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (MTBC). Pulmonary TB is the most common form of presentation, but extrapulmonary tuberculosis (EPTB) contributes significantly to morbidity and mortality. Rarely, patients with EPTB develop a form of ankle or foot arthritis. The diagnosis of TB arthritis is often overlooked because of the insidious onset and the non-specific clinical symptoms. Prognosis is generally poor; early diagnosis and delivery of the most appropriate treatment is critical to avoid functional disability

    Interplay Between SIRT-3, Metabolism and Its Tumor Suppressor Role in Hepatocellular Carcinoma

    Get PDF
    Sirtuins (SIRT), first described as nicotinamide adenine dinucleotide (NAD + )-dependent type III histone deacetylases, are produced by cells to support in the defense against chronic stress conditions such as metabolic syndromes, neurodegeneration, and cancer. SIRT-3 is one of the most studied members of the mitochondrial sirtuins family. In particular, its involvement in metabolic diseases and its dual role in cancer have been described. In the present review, based on the evidence of SIRT-3 involvement in metabolic dysfunctions, we aimed to provide an insight into the multifaceted role of SIRT-3 in many solid and hematological tumors with a particular focus on hepatocellular carcinoma (HCC). SIRT-3 regulatory effect and involvement in metabolism dysfunctions may have strong implications in HCC development and treatment. Research literature widely reports the relationship between metabolic disorders and HCC development. This evidence suggests a putative bridge role of SIRT-3 between metabolic diseases and HCC. However, further studies are necessary to demonstrate such interconnection

    Residual neurotoxicity in ovarian cancer patients in clinical remission after first-line chemotherapy with carboplatin and paclitaxel: The Multicenter Italian Trial in Ovarian cancer (MITO-4) retrospective study

    Get PDF
    BACKGROUND: Carboplatin/paclitaxel is the chemotherapy of choice for advanced ovarian cancer, both in first line and in platinum-sensitive recurrence. Although a significant proportion of patients have some neurotoxicity during treatment, the long-term outcome of chemotherapy-induced neuropathy has been scantly studied. We retrospectively assessed the prevalence of residual neuropathy in a cohort of patients in clinical remission after first-line carboplatin/paclitaxel for advanced ovarian cancer. METHODS: 120 patients have been included in this study (101 participating in a multicentre phase III trial evaluating the efficacy of consolidation treatment with topotecan, and 19 treated at the National Cancer Institute of Naples after the end of the trial). All patients received carboplatin (AUC 5) plus paclitaxel (175 mg/m(2)) every 3 weeks for 6 cycles, completing treatment between 1998 and 2003. Data were collected between May and September 2004. Residual sensory and motor neurotoxicity were coded according to the National Cancer Institute – Common Toxicity Criteria. RESULTS: 55 patients (46%) did not experience any grade of neurological toxicity during chemotherapy and of these none had signs of neuropathy during follow-up. The other 65 patients (54%) had chemotherapy-induced neurotoxicity during treatment and follow-up data are available for 60 of them. Fourteen out of 60 patients (23%) referred residual neuropathy at the most recent follow-up visit, after a median follow up of 18 months (range, 7–58 months): 12 patients had grade 1 and 2 patients grade 2 peripheral sensory neuropathy; 3 patients also had grade 1 motor neuropathy. The remaining 46/60 patients (77%) had no residual neuropathy at the moment of interview: recovery from neurotoxicity had occurred in the first 2 months after the end of chemotherapy in 22 (37%), between 2 and 6 months in 15 (25%), or after more than 6 months in 9 patients (15%). Considering all 120 treated patients, there was a 15% probability of persistent neurological toxicity 6 months after the end of chemotherapy. CONCLUSION: A significant proportion of patients with advanced ovarian cancer treated with first-line carboplatin/paclitaxel suffer long-term residual neuropathy. This issue should be carefully taken into account before considering re-treatment with the same agents in sensitive recurrent disease

    Towards a Muon Collider

    Full text link
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.Comment: 118 pages, 103 figure

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work

    Erratum:Towards a muon collider

    Get PDF

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
    corecore