69 research outputs found
Anthropometric and genetic determinants of cardiac morphology and function
Background
Cardiac structure and function result from complex interactions between genetic and environmental factors. Population-based studies have relied on 2-dimensional cardiovascular magnetic resonance as the gold-standard for phenotyping. However, this technique provides limited global metrics and is insensitive to regional or asymmetric changes in left ventricular (LV) morphology.
High-resolution 3-dimensional cardiac magnetic resonance (3D-CMR) with computational quantitative phenotyping, might improve on traditional CMR by enabling the creation of detailed 3D statistical models of the variation in cardiac phenotypes for use in studies of genetic and/or environmental effects on cardiac form or function.
Purpose
To determine whether 3D-CMR is applicable at scale, and provides methodological and statistical advantages over conventional imaging for large-scale population studies and to apply 3D-CMR to anthropometric and genetic studies of the heart.
Methods
1530 volunteers (54.8% females, 74.7% Caucasian, mean age 41.3±13.0 years) without self-reported cardiovascular disease were recruited prospectively to the Digital Heart Project. Using a cardiac atlas-based software, these images were computationally processed and quantitatively analysed. Parameters such as myocardial shape, curvature, wall thickness, relative wall thickness, end-systolic wall stress, fractional wall thickening and ventricular volumes were extracted at over 46,000 points in the model. The relationships between these parameters and systolic blood pressure (SBP), fat mass, lean mass and genetic variationswere analysed using 3D regression models adjusted for body surface area, gender, race, age and multiple testing.
Targeted resequencing of titin (TTN), the largest human gene and the commonest genetic cause of dilated cardiomyopathy, was performed in 928 subjects while common variants (~700.000) were genotyped in 1346 subjects.
Results
Automatically segmented 3D images were more accurate than 2D images at defining cardiac surfaces, resulting in fewer subjects being required to detect a statistically significant 1 mm difference in wall thickness. 3D-CMR enabled the detection of a strong and distinct regionality of the effects of SBP, body composition and genetic variation on the heart. It shows that the precursors of the hypertensive heart phenotype can be traced to healthy normotensives and that different ratios of body composition are associated with particular gender-specific patterns of cardiac remodelling. In 17 asymptomatic subjects with genetic variations associated with dilated cardiomyopathy, early stages of ventricular impairment and wall thinning were identified, which were not apparent by 2D imaging.
Conclusions
3D-CMR combined with computational modelling provides high-resolution insight into the earliest stages of heart disease. These methods show promise for population-based studies of the anthropometric, environmental and genetic determinants of LV form and function in health and disease.Open Acces
Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach
Deep learning approaches have achieved state-of-the-art performance in
cardiac magnetic resonance (CMR) image segmentation. However, most approaches
have focused on learning image intensity features for segmentation, whereas the
incorporation of anatomical shape priors has received less attention. In this
paper, we combine a multi-task deep learning approach with atlas propagation to
develop a shape-constrained bi-ventricular segmentation pipeline for short-axis
CMR volumetric images. The pipeline first employs a fully convolutional network
(FCN) that learns segmentation and landmark localisation tasks simultaneously.
The architecture of the proposed FCN uses a 2.5D representation, thus combining
the computational advantage of 2D FCNs networks and the capability of
addressing 3D spatial consistency without compromising segmentation accuracy.
Moreover, the refinement step is designed to explicitly enforce a shape
constraint and improve segmentation quality. This step is effective for
overcoming image artefacts (e.g. due to different breath-hold positions and
large slice thickness), which preclude the creation of anatomically meaningful
3D cardiac shapes. The proposed pipeline is fully automated, due to network's
ability to infer landmarks, which are then used downstream in the pipeline to
initialise atlas propagation. We validate the pipeline on 1831 healthy subjects
and 649 subjects with pulmonary hypertension. Extensive numerical experiments
on the two datasets demonstrate that our proposed method is robust and capable
of producing accurate, high-resolution and anatomically smooth bi-ventricular
3D models, despite the artefacts in input CMR volumes
MulViMotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI
Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods
Deep learning cardiac motion analysis for human survival prediction
Motion analysis is used in computer vision to understand the behaviour of
moving objects in sequences of images. Optimising the interpretation of dynamic
biological systems requires accurate and precise motion tracking as well as
efficient representations of high-dimensional motion trajectories so that these
can be used for prediction tasks. Here we use image sequences of the heart,
acquired using cardiac magnetic resonance imaging, to create time-resolved
three-dimensional segmentations using a fully convolutional network trained on
anatomical shape priors. This dense motion model formed the input to a
supervised denoising autoencoder (4Dsurvival), which is a hybrid network
consisting of an autoencoder that learns a task-specific latent code
representation trained on observed outcome data, yielding a latent
representation optimised for survival prediction. To handle right-censored
survival outcomes, our network used a Cox partial likelihood loss function. In
a study of 302 patients the predictive accuracy (quantified by Harrell's
C-index) was significantly higher (p < .0001) for our model C=0.73 (95 CI:
0.68 - 0.78) than the human benchmark of C=0.59 (95 CI: 0.53 - 0.65). This
work demonstrates how a complex computer vision task using high-dimensional
medical image data can efficiently predict human survival
Pulmonary artery stiffness is independently associated with right ventricular mass and function: a cardiac MR imaging study
Purpose: To determine the relationship between pulmonary artery (PA) stiffness and both right ventricular (RV) mass and function with cardiac magnetic resonance (MR) imaging.Materials and Methods: The study was approved by the local research ethics committee, and all participants gave written informed consent. Cardiac MR imaging was performed at 1.5 T in 156 healthy volunteers (63% women; age range, 19-61 years; mean age, 36.1 years). High-temporal-resolution phase-contrast imaging was performed in the main and right PAs. Pulmonary pulse wave velocity (PWV) was determined by the interval between arterial systolic upslopes. RV function was assessed with feature tracking to derive peak systolic strain and strain rate, as well as peak early-diastolic strain rate. RV volumes, ejection fraction (RVEF), and mass were measured from the cine images. The association of pulmonary PWV with RV function and mass was quantified with univariate linear regression. Interstudy repeatability was assessed with intraclass correlation.Results: The repeatability coefficient for pulmonary PWV was 0.96. Increases in pulmonary PWV and RVEF were associated with increases in age (r = 0.32, P < .001 and r = 0.18, P = .025, respectively). After adjusting for age (P = .090), body surface area (P = .073), and sex (P = .005), pulmonary PWV demonstrated an independent positive association with RVEF (r = 0.34, P = .026). Significant associations were also seen with RV mass (r = 0.41, P = .004), RV radial strain (r = 0.38, P =. 022), and strain rate (r = 0.35, P = .002), and independent negative associations were seen with radial (r = 0.27, P = .003), longitudinal (r = 0.40, P = .007), and circumferential (r = 0.31, P = .005) peak early-diastolic strain rate with the same covariates.Conclusion: Pulmonary PWV is reliably assessed with cardiac MR imaging. In subjects with no known cardiovascular disease, increasing PA stiffness is associated with increasing age and is also moderately associated with both RV mass and function after controlling for age, body surface area, and sex. (C) RSNA, 201
Combining deep learning and shape priors for bi-ventricular segmentation of volumetric cardiac magnetic resonance images
In this paper, we combine a network-based method with image registration to develop a shape-based bi-ventricular segmentation tool for short-axis cardiac magnetic resonance (CMR) volumetric images. The method first employs a fully convolutional network (FCN) to learn the segmentation task from manually labelled ground truth CMR volumes. However, due to the presence of image artefacts in the training dataset, the resulting FCN segmentation results are often imperfect. As such, we propose a second step to refine the FCN segmentation. This step involves performing a non-rigid registration with multiple high-resolution bi-ventricular atlases, allowing the explicit shape priors to be inferred. We validate the proposed approach on 1831 healthy subjects and 200 subjects with pulmonary hypertension. Numerical experiments on the two datasets demonstrate that our approach is capable of producing accurate, high-resolution and anatomically smooth bi-ventricular models, despite the artefacts in the input CMR volumes
- …