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Purpose: To determine the relationship between pulmonary artery 
(PA) stiffness and both right ventricular (RV) mass and 
function with cardiac magnetic resonance (MR) imaging.

Materials and 
Methods:

The study was approved by the local research ethics com-
mittee, and all participants gave written informed con-
sent. Cardiac MR imaging was performed at 1.5 T in 156 
healthy volunteers (63% women; age range, 19–61 years; 
mean age, 36.1 years). High-temporal-resolution phase-
contrast imaging was performed in the main and right 
PAs. Pulmonary pulse wave velocity (PWV) was deter-
mined by the interval between arterial systolic upslopes. 
RV function was assessed with feature tracking to derive 
peak systolic strain and strain rate, as well as peak early-
diastolic strain rate. RV volumes, ejection fraction (RVEF), 
and mass were measured from the cine images. The asso-
ciation of pulmonary PWV with RV function and mass was 
quantified with univariate linear regression. Interstudy re-
peatability was assessed with intraclass correlation.

Results: The repeatability coefficient for pulmonary PWV was 
0.96. Increases in pulmonary PWV and RVEF were asso-
ciated with increases in age (r = 0.32, P , .001 and r = 
0.18, P = .025, respectively). After adjusting for age (P = 
.090), body surface area (P = .073), and sex (P = .005), 
pulmonary PWV demonstrated an independent positive 
association with RVEF (r = 0.34, P = .026). Significant 
associations were also seen with RV mass (r = 0.41, P 
= .004), RV radial strain (r = 0.38, P = .022), and strain 
rate (r = 0.35, P = .002), and independent negative as-
sociations were seen with radial (r = 0.27, P = .003), 
longitudinal (r = 0.40, P = .007), and circumferential (r 
= 0.31, P = .005) peak early-diastolic strain rate with the 
same covariates.

Conclusion: Pulmonary PWV is reliably assessed with cardiac MR im-
aging. In subjects with no known cardiovascular disease, 
increasing PA stiffness is associated with increasing age 
and is also moderately associated with both RV mass and 
function after controlling for age, body surface area, and 
sex.
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(G.D., M.Q.) with at least 5 years of 
experience. The maximum gradient 
strength was 31 mT/m, and the max-
imum slew rate was 200 mT/m/msec. 
A 32-element cardiac phased-array coil 
was used for signal reception.

Ventricular function was assessed 
with standard balanced steady-state 
free precession cine images acquired 
in conventional cardiac short- and 
long-axis planes with the following typ-
ical parameters: repetition time msec/
echo time msec, 3.2/1.6; voxel size, 1.5 
3 1.5 3 8 mm; flip angle, 60°; sensi-
tivity encoding factor, 2.0; bandwidth, 
962 Hz/pixel; and temporal resolution, 
29 msec (15). An additional RV long-
axis image was acquired through the 
tricuspid annulus and the RV apex to 
assess longitudinal motion. Breath-
holding pulmonary phase-contrast im-
ages were acquired perpendicular to 
the direction of flow in the main PA, 1 
cm above the valve annulus, and in the 
right PA with the following sequence 
parameters: 3.9/2.3; voxel size, 1.4 3 
1.4 3 10 mm; flip angle, 15°; sensi-
tivity encoding factor, 2.0; bandwidth, 
722 Hz/pixel; velocity encoding ad-
justed to avoid aliasing; and temporal 

in tissue-tracking technology now offer 
a powerful tool for assessing contrac-
tile function and diastolic relaxation 
in populations without RV hypertro-
phy (10–12). Our hypothesis was that, 
similar to the systemic circulation, 
age-related changes in PA stiffness are 
associated with prognostically adverse 
structural and functional adaptations 
in the RV. In this study, we set out to 
determine the relationship between PA 
stiffness and both RV mass and func-
tion by using cardiac MR imaging.

Materials and Methods

Study Population
All subjects provided written informed 
consent for participation in the study, 
which was approved by the local re-
search ethics committee. Our prospec-
tive observational study included 156 
healthy adult volunteers who were re-
cruited by advertisement for a substudy 
of the United Kingdom Digital Heart 
Project. This cohort has no overlap 
with previously published data from 
this study (13,14). Healthy volunteers 
with no known cardiovascular disease 
were invited to participate by adver-
tisement. In pre-enrolment screening, 
we excluded participants who were un-
dergoing treatment for hypertension, 
diabetes, or hypercholesterolemia; with 
known occupational lung disease or 
pulmonary embolism; who were breast-
feeding or pregnant; and who were tak-
ing prescription medication, with the 
exception of simple analgesics, antihis-
tamines, and oral contraceptives. Stan-
dard safety contraindications to MR im-
aging were applied, including a weight 
limit of 120 kg.

MR Imaging Protocol
All images were acquired with a Phil-
ips 1.5-T MR Achieva system (Philips, 
Best, the Netherlands) by technologists 
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Abbreviations:
CI = confidence interval
LV = left ventricle
PA = pulmonary artery
PWV = pulse wave velocity
RV = right ventricle
RVEF = RV ejection fraction
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Advances in Knowledge

nn Assessing pulmonary pulse wave 
velocity with cardiac MR imaging 
is a reliable (intraclass correla-
tion coefficient, 0.96) way to 
noninvasively assess adaptations 
to aging in the cardiopulmonary 
system.

nn Pulmonary artery stiffness in-
creases with age (r = 0.32, P , 
.001) and is independently asso-
ciated with both right ventricular 
mass (r = 0.41, P = .004) and 
diastolic relaxation (r = 0.27–
0.40, all P , .01).

Implication for Patient Care

nn Pulmonary artery stiffness should 
be evaluated as a potential con-
tributory risk factor for cardiac 
dysfunction.

One of the earliest manifestations 
of vascular aging in humans is im-
pairment of central arterial func-

tion (1,2). Increased arterial stiffness in 
the systemic circulation is a strong pre-
dictor of cardiovascular events and all-
cause mortality, which is related to both 
structural and functional differences of 
the left ventricle (LV) (3). While there 
is evidence that pulmonary arterial (PA) 
and aortic stiffness increase with age, it 
is not known whether the right ventricle 
(RV) adapts to aging in the same way 
as the LV does (1,2,4). This is clinically 
important because even mild RV hyper-
trophy is an independent predictor of 
heart failure and death in populations 
with no clinical cardiovascular disease 
at baseline (5).

Cardiac magnetic resonance (MR) 
imaging techniques for assessing the 
relationship between LV mass, con-
tractile function, and aortic stiffness 
are well established, but applying 
them to the right side of the heart and 
pulmonary circulation is challenging 
because of the complex geometry of 
the RV and proximal branching of the 
PAs (6,7). High-temporal-resolution 
phase-contrast imaging has shown 
promise as a technique to overcome 
these limitations, allowing pulse wave 
velocity (PWV) to be measured in the 
pulmonary circulation; however, these 
methods have not been prospectively 
applied to cohort studies (8,9). As-
sessment of RV mass with cardiac MR 
imaging is a reproducible technique in 
healthy subjects, and recent advances 
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twice on the same day. Interobserver 
agreement was assessed by two inde-
pendent readers (T.J.W.D., A.d.M.), 
each with 3 years of cardiac MR imag-
ing experience.

RV Function Analysis
Cine image analysis was performed 
on a Philips ViewForum (Best, the 
Netherlands), and data were indexed 
to body surface area. Endocardial and 
epicardial borders of the RV were 
manually traced on short-axis cine im-
ages at end systole and end diastole 
by two reviewers (T.J.W.D., A.d.M.). 
The position of the pulmonary and 
tricuspid valves was referenced on 
long-axis images to ensure correct 
placement of the contours. Papillary 
muscles and trabeculae were included 
in the RV volumes but excluded from 
RV mass.

cardiac cycle by two readers (A.G., 
with 2 years of MR imaging expe-
rience, and R.B., with 1 year of MR 
imaging experience). The path length 
was defined on anatomic images to 
create a three-dimensional Bezier 
curve through the center of the vessel 
that intersected the planes at which 
flow measurements were obtained. 
To minimize the variability of foot-to-
foot measurement in the pulmonary 
system, the transit time was calculated 
as the average time difference between 
data points at 10%–90% of the nor-
malized arterial systolic upslope with 
integration by parts between the flow 
curves. Pulmonary PWV was then cal-
culated with the formula D/Dt.

Reliability
Repeatability was assessed in 20 con-
secutive subjects who were each imaged 

resolution, 15 msec. To calculate path 
length, a balanced steady-state free 
precession single shot sequence was 
performed by using a three-point plan 
along the main and right PAs intersect-
ing the planes at which phase encod-
ing was performed with the following 
parameters: 3.4/1.7; voxel size, 0.63 3 
0.63 3 10 mm; flip angle, 60°; band-
width, 722 Hz/pixel.

Pulmonary PWV Analysis
In each phase-encoded sequence, pul-
monary PWV was calculated from the 
three-dimensional vessel length (D) and 
transit time (Dt) between the flow wave-
forms with validated software (ART-
FUN; Inserm, Paris, France) (Fig 1)  
(6,16). On the magnitude phase-con-
trast images, regions of interest were 
drawn around the vessel lumen and 
automatically propagated through the 

Figure 1

Figure 1:   A, Phase-contrast MR images obtained in a 45-year-old woman show normalized flow waveforms in the main (MPA) and right (RPA) 
PAs. B, Pulmonary angiographic image shows the relationship of scanning planes and the path length (green line). C, Graph shows the 
transit time between the normalized flow waveforms, which was measured on the upslope of the curve between the points shown.
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vs 12.4% and P = .328; Wilcoxon rank 
sum test). When pooling strain and 
strain rate, mean absolute errors were 
similar for longitudinal, radial, and cir-
cumferential measures (intraobserver 
agreement, 8.1%, 14.6%, and 9.7%, 
respectively, and P = .353; interob-
server agreement, 12.9%, 10%, and 
19%, respectively, and P = .608; Krus-
kal-Wallis rank sum test).

Pulmonary PWV
There was no significant difference in 
pulmonary PWV between the sexes 
(women: mean, 2.19 m/sec; standard 
error, 0.05; men: mean, 2.21 m/sec; 
standard error, 0.07; mean difference, 
0.019 m/sec; 95% CI: 0.162, 0.199; P 
= .837), races (mean difference, 0.009 
m/sec; 95% CI: 0.129, 0.111; P = .839), 
and it was not associated with cardiac 
output (r = 0.10, P = .224). Pulmonary 

Significance was assessed with two-
tailed testing, with P , .05 indicating 
a significant difference.

Results

All 156 subjects completed the imag-
ing protocol. All data sets were ana-
lyzed and included in the final analysis. 
Subjects’ anthropometric data are de-
scribed in the Table. The mean age 
of the cohort was 36.1 years (range, 
19–61 years), and 63% were women. 
The difference in age between men 
and women was not significant (men: 
mean age, 34.6 years; standard error 
1.1; age range, 22–55 years; women: 
mean age, 37.0 years; standard error 
1.2; age range, 19–61 years; estimated 
difference between men and women, 
2.4 years; 95% confidence interval [CI]: 
0.7, 5.6 years, P = .133).

Reliability
Test-retest reproducibility and interob-
server agreement are shown in Table 
E1 (online) for volumetry, PWV, and 
functional assessment. When pooling 
components of function, median abso-
lute errors were higher for strain rate 
than they were for strain (intraobserv-
er agreement, 13.9% vs 9.9% and P = 
.027; interobserver agreement, 14.9% 

Systolic and diastolic function were 
quantified with feature-tracking soft-
ware (TomTec Imaging Systems, Mu-
nich, Germany) and validated in both 
the RVs and LVs (11,12). Briefly, man-
ual definition of an endocardial con-
tour at end diastole by an observer 
(T.J.W.D.) served as an initialization 
from which software is used to track 
the displacement of spatial features in 
the time series of images (17). Systolic 
strain and strain rate, its temporal de-
rivative, were measured in the RV from 
two- and four-chamber cine images (ie, 
longitudinal) and from short-axis cine 
images at the midpapillary level (ie, cir-
cumferential and radial) (Fig 2). For all 
measurements, the mean value across 
ventricular segments was calculated at 
each time point, and the peak value was 
recorded. For measurements that were 
recorded in more than one plane, peak 
values were averaged. Systolic and dia-
stolic function were quantified by peak 
systolic strain and strain rate and by 
peak early diastolic strain rate, respec-
tively. End diastole was identified as 
the frame with the largest end-diastolic 
area at the midpapillary level in the LV.

Statistical Analysis
Data were analyzed with R software, 
version 3.1.1 (http://www.R-project.
org). Preliminary associations were 
assessed with correlation analysis and 
simple linear regression. Multiple lin-
ear regression was used to assess for 
independent relationships after con-
trolling for age, body surface area, 
and sex. Data were log-transformed 
to satisfy the assumptions of linear re-
gression and tested by the normality 
of residuals (Shapiro-Wilk test), ho-
moscedasticity (inspection of residual 
plots), and absence of multicollinearity 
(variance inflation factor) and outlier 
effects (Cook distance). All fields were 
centered and scaled before analysis to 
allow comparison of effect sizes. Con-
tinuous variables were compared be-
tween groups with the unpaired t test 
(two groups) or one-way analysis of 
variance (more than two groups) af-
ter logarithmic transformation, where 
necessary. Reliability was assessed 
with intraclass correlation coefficients. 

Figure 2

Figure 2:  Graph shows examples of radial (red 
line), longitudinal (blue line), and circumferential 
(green line) strain obtained during the cardiac cycle 
in a 33-year-old woman with feature-tracking 
motion analysis.

Subject Characteristics and Cardiac 
MR Imaging–derived Measurements

Characteristic Women Men

Age (y) 37 (12) 35 (8)
Body surface area (m2) 1.74 (0.16) 1.99 (0.17)
Indexed RV end-diastolic 

volume
86 (18) 98 (17)

Indexed RV �end-systolic 
volume

41 (12) 52 (10)

Indexed RV mass 13 (5) 14 (5)
RVEF (%) 52 (9) 47 (8)
Pulmonary PWV (m/s) 2.2 (0.5) 2.2 (0.6)
Race*
  African-Caribbean 1 (0.6) 1 (0.6)
  Black 3 (1.9) 2 (1.3)
  Asian 7 (4.5) 11 (7.1)
  White 80 (51.2) 42 (26.9)
  Chinese 2 (1.3) 1 (0.6)
  Mixed 5 (3.2) 1 (0.6)
Cigarette use*
  Yes 8 (5.1) 4 (2.6)
  No 67 (42.9) 44 (28.2)
  Unknown 0 (0) 1 (0.6)
  Ex-smoker 23 (14.7) 9 (5.8)

Note.—Unless otherwise indicated, data are the mean, 
and data in parentheses are standard deviation. There 
were a total of 156 subjects, with 98 women and 58 
men.

* Data are numbers of subjects, and data in parentheses 
are percentages.
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important pathophysiologic mediators 
of the powerful contribution that arte-
rial blood pressure has on cardiovascu-
lar risk (18). An association between 
LV hypertrophy and arterial stiffness 
is well documented in both adults and 
adolescents independent of blood pres-
sure and is an established risk factor 
for cardiovascular events (19–21). Less 
is known about the effect of vascular 
aging on RV function and its impact on 
health outcomes, although echocardio-
graphic estimates of PA pressure in-
crease with age in the general popula-
tion and are an indicator of all-cause 
mortality (4). Hemodynamic studies 
show that PA stiffness influences RV 
function, an effect that is mediated 
through changes in ventriculoarterial 
coupling (22–25). It is now recognized 
that, in adults without clinical cardio-
vascular disease at baseline, RV mass 
(measured with cardiac MR imaging) 
is an independent predictor of heart 
failure and cardiovascular death, even 
when accounting for variation in LV 
mass (5). It is not known what factors 
drive an increase in RV mass with age. 
Therefore, the aim of our study was to 
determine whether the relationship be-
tween vascular stiffness and myocardial 
hypertrophy seen in the systemic circu-
lation is also present in the right side of 
the heart and PAs.

We showed that cardiac MR im-
aging offers reliable assessment of 
pulmonary PWV, RV mass, and RV 
strain in healthy volunteers by using 
measurements taken from phase-con-
trast images and feature tracking of 
balanced steady-state free precession 
cine images. In contrast to aortic PWV, 
there is a shorter path length in the 
pulmonary circulation over which to 
measure transit time, and there are 
distinct wave propagation and reflec-
tion effects (26). While free-breathing 
interleaved phase-contrast imaging has 
achieved a very high temporal resolu-
tion for measurement of PWV in the 
proximal PAs, a disadvantage is the 
long acquisition time and the poten-
tial for physiologic variation (8,9). We 
found that pulmonary PWV can be re-
liably assessed in healthy adults with 
the use of breath-hold phase-contrast 

(r = 0.02, P = .802), longitudinal strain 
rate (r = 0.03, P = .688), or circumfer-
ential strain (r = 0.08, P = .334). Cir-
cumferential strain rate showed a sig-
nificant but weak negative association 
with pulmonary PWV (r = 0.16, P = 
.043). Pulmonary PWV was associated 
with significant and similarly sized re-
ductions in radial, longitudinal, and 
circumferential peak early diastolic 
strain rate (Fig 4). All significant as-
sociations persisted after adjusting for 
age, body surface area, and sex (Table 
E2 [online]).

Discussion

In a large cohort of healthy adults, we 
found that PA stiffness increases with 
age and is independently associated 
with an increase in RV mass and di-
astolic stiffness after controlling for 
age, sex, and body surface area. These 
findings indicate that, similar to the 
systemic circulation, prognostically ad-
verse changes in the RV are associated 
with vascular aging. Combined assess-
ment of RV performance and PA stiff-
ness with cardiac MR imaging provides 
a reliable means to evaluate physiologic 
adaptations of the cardiopulmonary 
unit.

Systemic arterial stiffness and wave 
reflection phenomena are recognized as 

PWV was significantly and positively as-
sociated with age (r = 0.32, P , .001).

RV Function
RV ejection fraction (RVEF) was signif-
icantly higher in women than in men 
(t test; mean RVEF, 52% vs 47%; P , 
.001), with no effect of race (analysis 
of variance, P = .352). Age was posi-
tively associated with RVEF (r = 0.18, 
P = .025) and negatively related to both 
RV end-systolic (r = 0.27, P , .001) 
and end-diastolic (r = 0.22, P = .005) 
volume. These associations persisted 
after adjustment for the effects of body 
surface area and sex (RVEF: r = 0.31 
and P = .022; RV end-systolic volume: 
r = 0.70 and P , .001; RV end-diastolic 
volume: r = 0.72 and P , .001). RVEF 
was positively associated with LV ejec-
tion fraction (r = 0.28 and P , .001).

Pulmonary PWV and RV Function
Pulmonary PWV was positively asso-
ciated with RVEF (r = 0.34, P = .026) 
after adjusting for age (P = .090), body 
surface area (P = .073), and sex (P = 
.005) and with RV mass (r = 0.41, P 
= .004) after adjusting for age (P , 
.001), body surface area (P = .008), 
and sex (P = .086) (Fig 3). PWV was 
associated with radial strain (r = 0.17, 
P = .030) and strain rate (r = 0.25, P = 
.002), but not with longitudinal strain 

Figure 4

Figure 4:  Scatterplot shows corrected peak end-
diastolic longitudinal strain rate (adjusted to mean 
age [36 years], body surface area [1.83 m2], and 
female sex) versus pulmonary PWV, with regression 
line and 95% CI.

Figure 3

Figure 3:  Scatterplot shows corrected RV mass 
(adjusted to mean age [36 years], body surface area 
[1.83 m2], and female sex) versus pulmonary PWV, 
with regression line and 95% CI.
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(38,39). A “foot-to-foot” comparison 
of the flow curves would be appealing, 
as the effect of wave reflection would 
be minimal; however, as others have 
reported, this inflection point is indis-
tinct in the pulmonary arteries (9). We 
used automated vessel tracking during 
the cardiac cycle but were not able to 
compensate for through-plane motion.

In conclusion, aging is related to 
increased PA stiffness in healthy adults 
and moderately associated with both 
RV mass and diastolic function. These 
findings suggest that prognostically ad-
verse changes in RV function and mor-
phologic features are associated with 
an age-related increase in PA stiffness.
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factors, including LV end-diastolic 
pressure, may influence hemodynamics 
of the right side of the heart. For eth-
ical reasons, we did not confirm nor-
mal PA pressure with catheterization 
of the right side of the heart, and we 
had no reference standard with which 
to compare cardiac MR imaging as-
sessment of PWV. Transaxial imaging 
of the RV may provide easier identi-
fication of valve planes than the short 
axis, but volumetry is comparable in 
both axes in subjects without complex 
heart disease (36,37). Free-breathing 
interleaved phase-contrast sequences 
have achieved greater temporal reso-
lution but require several minutes for 
acquisition, making them vulnerable 
to physiologic variations (9). The tem-
poral resolution of our phase-contrast 
sequence was relatively low compared 
with the transit time being measured, 
but it achieved good repeatability in 
healthy adult subjects. Several au-
thors have commented on the influ-
ence of reflection waves from short 
path lengths and frequent bifurcations 

sequences performed with parallel im-
aging; however, greater improvements 
in spatial and temporal resolution may 
be achievable with techniques such as 
compressed sensing (27). Our data 
show that PA stiffness is positively as-
sociated with age, a finding consistent 
with experimental evidence that pulmo-
nary vascular elastic properties decline 
over time, with an increase in medial 
thickness (28–30). We also observed 
that rising PA stiffness was moderately 
associated with both an increase in RV 
mass and a decline in diastolic func-
tion among apparently healthy adults. 
Age-related increases in RVEF were ob-
served in other cohorts; because of the 
association with radial but not longitu-
dinal or circumferential function, we 
suggest that this is principally related 
to an increase in radial contractility 
(31). Although a low pressure system 
makes distinctive demands on the right 
ventricle, our findings of an association 
between pulmonary vascular aging and 
increased RV mass and myocardial stiff-
ness draw parallels with the physiologic 
characteristics of the systemic circula-
tion (32). A tandem rise in vascular and 
ventricular stiffness occurs with aging 
in the aorta and LV associated with in-
creasing afterload; our PWV and strain 
data show that a similar response may 
also occur in the PA and RV (33,34). 
How RV mass mediates cardiovascular 
risk in the general population is not 
known, but it was proposed that the RV 
serves as a more sensitive “barometer” 
of cumulative exposure to elevated LV 
end-diastolic pressure over time than a 
single measurement of LV mass or ejec-
tion fraction. Our data, supported by 
prognostic studies on PA pressure, and 
RV mass suggest that subclinical vascu-
lar aging may contribute to increasing 
afterload, RV hypertrophy, and dia-
stolic dysfunction in the general popula-
tion (4, 5).

The role of RV structure and func-
tion in both health and disease has his-
torically been neglected compared with 
the epidemiologic characteristics of LV 
hypertrophy, systemic hypertension, 
and aortic aging, as is evidenced by the 
extensive literature on these topics. 
Our data shed light on the underlying 
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