123 research outputs found

    Synthesizing Java expressions from free-form queries

    Full text link

    Deep Memory Networks for Attitude Identification

    Full text link
    We consider the task of identifying attitudes towards a given set of entities from text. Conventionally, this task is decomposed into two separate subtasks: target detection that identifies whether each entity is mentioned in the text, either explicitly or implicitly, and polarity classification that classifies the exact sentiment towards an identified entity (the target) into positive, negative, or neutral. Instead, we show that attitude identification can be solved with an end-to-end machine learning architecture, in which the two subtasks are interleaved by a deep memory network. In this way, signals produced in target detection provide clues for polarity classification, and reversely, the predicted polarity provides feedback to the identification of targets. Moreover, the treatments for the set of targets also influence each other -- the learned representations may share the same semantics for some targets but vary for others. The proposed deep memory network, the AttNet, outperforms methods that do not consider the interactions between the subtasks or those among the targets, including conventional machine learning methods and the state-of-the-art deep learning models.Comment: Accepted to WSDM'1

    Towards Computing Inferences from English News Headlines

    Full text link
    Newspapers are a popular form of written discourse, read by many people, thanks to the novelty of the information provided by the news content in it. A headline is the most widely read part of any newspaper due to its appearance in a bigger font and sometimes in colour print. In this paper, we suggest and implement a method for computing inferences from English news headlines, excluding the information from the context in which the headlines appear. This method attempts to generate the possible assumptions a reader formulates in mind upon reading a fresh headline. The generated inferences could be useful for assessing the impact of the news headline on readers including children. The understandability of the current state of social affairs depends greatly on the assimilation of the headlines. As the inferences that are independent of the context depend mainly on the syntax of the headline, dependency trees of headlines are used in this approach, to find the syntactical structure of the headlines and to compute inferences out of them.Comment: PACLING 2019 Long paper, 15 page

    Semantically linking molecular entities in literature through entity relationships

    Get PDF
    Background Text mining tools have gained popularity to process the vast amount of available research articles in the biomedical literature. It is crucial that such tools extract information with a sufficient level of detail to be applicable in real life scenarios. Studies of mining non-causal molecular relations attribute to this goal by formally identifying the relations between genes, promoters, complexes and various other molecular entities found in text. More importantly, these studies help to enhance integration of text mining results with database facts. Results We describe, compare and evaluate two frameworks developed for the prediction of non-causal or 'entity' relations (REL) between gene symbols and domain terms. For the corresponding REL challenge of the BioNLP Shared Task of 2011, these systems ranked first (57.7% F-score) and second (41.6% F-score). In this paper, we investigate the performance discrepancy of 16 percentage points by benchmarking on a related and more extensive dataset, analysing the contribution of both the term detection and relation extraction modules. We further construct a hybrid system combining the two frameworks and experiment with intersection and union combinations, achieving respectively high-precision and high-recall results. Finally, we highlight extremely high-performance results (F-score > 90%) obtained for the specific subclass of embedded entity relations that are essential for integrating text mining predictions with database facts. Conclusions The results from this study will enable us in the near future to annotate semantic relations between molecular entities in the entire scientific literature available through PubMed. The recent release of the EVEX dataset, containing biomolecular event predictions for millions of PubMed articles, is an interesting and exciting opportunity to overlay these entity relations with event predictions on a literature-wide scale

    Learning perceptually grounded word meanings from unaligned parallel data

    Get PDF
    In order for robots to effectively understand natural language commands, they must be able to acquire meaning representations that can be mapped to perceptual features in the external world. Previous approaches to learning these grounded meaning representations require detailed annotations at training time. In this paper, we present an approach to grounded language acquisition which is capable of jointly learning a policy for following natural language commands such as “Pick up the tire pallet,” as well as a mapping between specific phrases in the language and aspects of the external world; for example the mapping between the words “the tire pallet” and a specific object in the environment. Our approach assumes a parametric form for the policy that the robot uses to choose actions in response to a natural language command that factors based on the structure of the language. We use a gradient method to optimize model parameters. Our evaluation demonstrates the effectiveness of the model on a corpus of commands given to a robotic forklift by untrained users.U.S. Army Research Laboratory (Collaborative Technology Alliance Program, Cooperative Agreement W911NF-10-2-0016)United States. Office of Naval Research (MURIs N00014-07-1-0749)United States. Army Research Office (MURI N00014-11-1-0688)United States. Defense Advanced Research Projects Agency (DARPA BOLT program under contract HR0011-11-2-0008

    Benchmarking natural-language parsers for biological applications using dependency graphs

    Get PDF
    BACKGROUND: Interest is growing in the application of syntactic parsers to natural language processing problems in biology, but assessing their performance is difficult because differences in linguistic convention can falsely appear to be errors. We present a method for evaluating their accuracy using an intermediate representation based on dependency graphs, in which the semantic relationships important in most information extraction tasks are closer to the surface. We also demonstrate how this method can be easily tailored to various application-driven criteria. RESULTS: Using the GENIA corpus as a gold standard, we tested four open-source parsers which have been used in bioinformatics projects. We first present overall performance measures, and test the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the requirements of a system for extracting gene expression relationships. These two tools clearly outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or exceeding native dependency parsers on similar tasks in previous biological evaluations. CONCLUSION: Evaluating using dependency graphs allows parsers to be tested easily on criteria chosen according to the semantics of particular biological applications, drawing attention to important mistakes and soaking up many insignificant differences that would otherwise be reported as errors. Generating high-accuracy dependency graphs from the output of phrase-structure parsers also provides access to the more detailed syntax trees that are used in several natural-language processing techniques
    corecore