43 research outputs found

    Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab

    Get PDF
    The aim of this study is to evaluate the influence of germline vascular endothelial growth factor (VEGF) gene polymorphisms (VGPs) on the efficacy of the anti-VEGF antibody bevacizumab (Bev) in metastatic colorectal cancer (MCRC) patients

    Development of a chemically defined medium and discovery of new mitogenic growth factors for mouse hepatocytes: Mitogenic effects of FGF1/2 and PDGF

    Get PDF
    Chemically defined serum-free media for rat hepatocytes have been useful in identifying EGFR ligands and HGF/MET signaling as direct mitogenic factors for rat hepatocytes. The absence of such media for mouse hepatocytes has prevented screening for discovery of such mitogens for mouse hepatocytes. We present results obtained by designing such a chemically defined medium for mouse hepatocytes and demonstrate that in addition to EGFR ligands and HGF, the growth factors FGF1 and FGF2 are also important mitogenic factors for mouse hepatocytes. Smaller mitogenic response was also noticed for PDGF AB. Mouse hepatocytes are more likely to enter into spontaneous proliferation in primary culture due to activation of cell cycle pathways resulting from collagenase perfusion. These results demonstrate unanticipated fundamental differences in growth biology of hepatocytes between the two rodent species. Copyright: © 2014 Reekie et al

    Hyperpolarization-activated and cyclic nucleotide-gated channels are differentially expressed in juxtaglomerular cells in the olfactory bulb of mice

    Get PDF
    In the olfactory bulb, input from olfactory receptor neurons is processed by neuronal networks before it is relayed to higher brain regions. In many neurons, hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels generate and control oscillations of the membrane potential. Oscillations also appear crucial for information processing in the olfactory bulb. Four channel isoforms exist (HCN1–HCN4) that can form homo- or heteromers. Here, we describe the expression pattern of HCN isoforms in the olfactory bulb of mice by using a novel and comprehensive set of antibodies against all four isoforms. HCN isoforms are abundantly expressed in the olfactory bulb. HCN channels can be detected in most cell populations identified by commonly used marker antibodies. The combination of staining with marker and HCN antibodies has revealed at least 17 different staining patterns in juxtaglomerular cells. Furthermore, HCN isoforms give rise to an unexpected wealth of co-expression patterns but are rarely expressed in the same combination and at the same level in two given cell populations. Therefore, heteromeric HCN channels may exist in several cell populations in vivo. Our results suggest that HCN channels play an important role in olfactory information processing. The staining patterns are consistent with the possibility that both homomeric and heteromeric HCN channels are involved in oscillations of the membrane potential of juxtaglomerular cells

    Carnosine:can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?

    Get PDF
    The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide's influence on cellular ATP concentrations. Carnosine's ability to reduce the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge of carnosine's mode of action on human cells. © 2013 Hipkiss et al.; licensee Chemistry Central Ltd

    A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells

    No full text
    In the acute promyelocytic leukemia (APL) bearing the t(15;17), all-trans-retinoic acid (ATRA) treatment induces granulocytic maturation and complete remission of leukemia. We identified miR-342 as one of the microRNAs (miRNAs) upregulated by ATRA during APL differentiation. This miRNA emerged as a direct transcriptional target of the critical hematopoietic transcription factors PU.1 and interferon regulatory factor (IRF)-1 and IRF-9. IRF-1 maintains miR-342 at low levels, whereas the binding of PU.1 and IRF-9 in the promoter region following retinoic ATRA-mediated differentiation, upregulates miR-342 expression. Moreover, we showed that enforced expression of miR-342 in APL cells stimulated ATRA-induced differentiation. These data identified miR-342 as a new player in the granulocytic differentiation program activated by ATRA in APL

    VEGF gene promoter polymorphisms and risk of VTE in chemotherapytreated cancer patients

    No full text
    Among the possible genetic contributors to cancer-related venous thromboembolism (VTE), vascular endothelial growth factor (VEGFA) could play an important role, as an imbalance of the VEGFA system (either disease-related or drug-induced) may result in a disturbance of vascular homeostasis. Thus, this study was designed to investigate the predictive role of eight different VEGFA gene promoter single nucleotide polymorphisms (SNPs) for a first VTE episode in cancer out-patients undergoing chemotherapy. To this purpose, VEGFA gene promoter polymorphisms were analysed in 297 cancer patients using polymerase chain reaction amplification and direct DNA sequencing analysis. One hundred forty unrelated healthy subjects from the same geographical area were also analysed in order to evaluate and compare genotype/haplotype frequencies in our ethnicity. VTE occurred in 26 (9%) of cancer patients with a median time-to-event of 3.4 months. Association analyses showed that -1154G/A polymorphism was significantly associated with the risk of chemotherapy-triggered VTE, with the A allele exerting a protective role both in the overall population (hazard ratio [HR]: 0.21; 95% confidence interval [CI]: 0.07-0.58) or in bevacizumab-treated metastatic patients (HR: 0.09, 95%CI: 0.01-0.86) in whom VEGFA -1154AA genotype also conferred a reduced risk of early progression (HR: 0.58, 95%CI: 0.34-0.98). These results suggest that VEGFA may represent a candidate gene contributing to VTE development in chemotherapy treated cancer patients and that -1154G/A SNP might provide useful clinical information on the efficacy and toxicity of bevacizumab in metastatic patients. Validation studies are needed for translation into clinical practice
    corecore