59 research outputs found

    Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals

    Get PDF
    A number of recent studies consistently show an area, known as the visual word form area (VWFA), in the left fusiform gyrus that is selectively responsive for visual words in alphabetic scripts as well as in logographic scripts, such as Chinese characters. However, given the large difference between Chinese characters and alphabetic scripts in terms of their orthographic rules, it is not clear at a fine spatial scale, whether Chinese characters engage the same VWFA in the occipito-temporal cortex as alphabetic scripts. We specifically compared Chinese with Korean script, with Korean script serving as a good example of alphabetic writing system, but matched to Chinese in the overall square shape. Sixteen proficient early Chinese-Korean bilinguals took part in the fMRI experiment. Four types of stimuli (Chinese characters, Korean characters, line drawings and unfamiliar Chinese faces) were presented in a block-design paradigm. By contrasting characters (Chinese or Korean) to faces, presumed VWFAs could be identified for both Chinese and Korean characters in the left occipito-temporal sulcus in each subject. The location of peak response point in these two VWFAs were essentially the same. Further analysis revealed a substantial overlap between the VWFA identified for Chinese and that for Korean. At the group level, there was no significant difference in amplitude of response to Chinese and Korean characters. Spatial patterns of response to Chinese and Korean are similar. In addition to confirming that there is an area in the left occipito-temporal cortex that selectively responds to scripts in both Korean and Chinese in early Chinese-Korean bilinguals, our results show that these two scripts engage essentially the same VWFA, even at the level of fine spatial patterns of activation across voxels. These results suggest that similar populations of neurons are engaged in processing the different scripts within the same VWFA in early bilinguals

    The Neural Basis of Object-Context Relationships on Aesthetic Judgment

    Get PDF
    The relationship between contextual information and object perception has received considerable attention in neuroimaging studies. In the work reported here, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between aesthetic judgment and images of objects in their normal contextual setting versus images of objects in abnormal contextual settings and the underlying brain activity. When object-context relationships are violated changes in visual perception and aesthetic judgment emerges that exposes the contribution of vision to interpretations shaped by previous experience. We found that effects of context on aesthetic judgment modulates different memory sub-systems, while aesthetic judgment regardless of context recruit medial and lateral aspects of the orbitofrontal cortex, consistent with previous findings. Visual cortical areas traditionally associated with the processing of visual features are recruited in normal contexts, irrespective of aesthetic ratings, while prefrontal areas are significantly more engaged when objects are viewed in unaccustomed settings

    Connectivity of the Primate Superior Colliculus Mapped by Concurrent Microstimulation and Event-Related fMRI

    Get PDF
    Background: Neuroanatomical studies investigating the connectivity of brain areas have heretofore employed procedures in which chemical or viral tracers are injected into an area of interest, and connected areas are subsequently identified using histological techniques. Such experiments require the sacrifice of the animals and do not allow for subsequent electrophysiological studies in the same subjects, rendering a direct investigation of the functional properties of anatomically identified areas impossible. Methodology/Principal Findings: Here, we used a combination of microstimulation and fMRI in an anesthetized monkey preparation to study the connectivity of the superior colliculus (SC). Microstimulation of the SC resulted in changes in the blood oxygenation level-dependent (BOLD) signals in the SC and in several cortical and subcortical areas consistent with the known connectivity of the SC in primates. Conclusions/Significance: These findings demonstrates that the concurrent use of microstimulation and fMRI can be used to identify brain networks for further electrophysiological or fMRI investigation

    Representing Where along with What Information in a Model of a Cortical Patch

    Get PDF
    Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects

    The distribution of category and location information across object-selective regions in human visual cortex

    No full text
    Since Ungerleider and Mishkin [Underleider LG, Mishkin M (1982) Two cortical visual systems. Analysis of Visual Behavior, eds Ingle MA, Goodale MI, Masfield RJW (MIT Press, Cambridge, MA), pp 549–586] proposed separate visual pathways for processing object shape and location, steady progress has been made in characterizing the organization of the two kinds of information in extrastriate visual cortex in humans. However, to date, there has been no broad-based survey of category and location information across all major functionally defined object-selective regions. In this study, we used an fMRI region-of-interest (ROI) approach to identify eight regions characterized by their strong selectivity for particular object categories (faces, scenes, bodies, and objects). Participants viewed four types of stimuli (faces, scenes, bodies, and cars) appearing in each of three different spatial locations (above, below, or at fixation). Analyses based on the mean response and voxelwise patterns of response in each ROI reveal location information in almost all of the known object-selective regions. Furthermore, category and location information can be read out independently of one another such that most regions contain both position-invariant category information and category-invariant position information. Finally, we find substantially more location information in ROIs on the lateral than those on the ventral surface of the brain, even though these regions have equal amounts of category information. Although the presence of both location and category information in most object-selective regions argues against a strict physical separation of processing streams for object shape and location, the ability to extract position-invariant category information and category-invariant position information from the same neural population indicates that form and location information nonetheless remain functionally independent
    • …
    corecore