6 research outputs found

    Autologous fat grafting : latest insights

    Get PDF
    A recent rise in the use of autologous fat transfer for soft tissue augmentation has paralleled the increasing popularity of liposuction body contouring. This creates a readily available and inexpensive product for lipografting, which is the application of lipoaspirated material. Consistent scientific proof about the long-term viability of the transferred fat is not available. Clinically, there is a reabsorption rate which has been reported to range from 20 to 90%. Results can be unpredictable with overcorrection and regular need for additional interventions. In this review, adipogenesis physiology and the adipogenic cascade from adipose-derived stem cells to adult adipocytes is extensively described to determine various procedures involved in the fat grafting technique. Variables in structure and physiology, adipose tissue harvesting- and processing techniques, and the preservation of fat grafts are taken into account to collect reproducible scientific data to establish standard in vitro and in vivo models for experimental fat grafting. Adequate histological staining for fat tissue, immunohistochemistry and viability assays should be universally used in experiments to be able to produce comparative results. By analysis of the applied methods and comparison to similar experiments, a conclusion concerning the ideal technique to improve clinical outcome is proposed

    Selection of DNA nanoparticles with preferential binding to aggregated protein target.

    Get PDF
    High affinity and specificity are considered essential for affinity reagents and molecularly-targeted therapeutics, such as monoclonal antibodies. However, life's own molecular and cellular machinery consists of lower affinity, highly multivalent interactions that are metastable, but easily reversible or displaceable. With this inspiration, we have developed a DNA-based reagent platform that uses massive avidity to achieve stable, but reversible specific recognition of polyvalent targets. We have previously selected these DNA reagents, termed DeNAno, against various cells and now we demonstrate that DeNAno specific for protein targets can also be selected. DeNAno were selected against streptavidin-, rituximab- and bevacizumab-coated beads. Binding was stable for weeks and unaffected by the presence of soluble target proteins, yet readily competed by natural or synthetic ligands of the target proteins. Thus DeNAno particles are a novel biomolecular recognition agent whose orthogonal use of avidity over affinity results in uniquely stable yet reversible binding interactions

    Xenogen-free isolation and culture of human adipose mesenchymal stem cells

    Get PDF
    Background: Adipose-derived Stem Cells (ASCs) present great potential for reconstructive procedures. Currently, isolation by enzyme digestion and culturing using xenogenic substances remain the gold standard, impairing clinical use. Methods: Abdominal lipo-aspirate and blood samples were obtained from healthy patients. A novel mechanical isolation method for ASCs was compared to (the standard) collagenase digestion. ASCs are examined by flow-cytometry and multilineage differentiation assays. Cell cultures were performed without xenogenic or toxic substances, using autologous plasma extracted from peripheral blood. After eGFP-transfection, an in vivo differentiation assay was performed. Results: Mechanical isolation is more successful in isolating CD34(+)/CD31(-)/CD45(-)/CD13(+)/CD73(+)/CD146(-) ASCs from lipo-aspirate than isolation via collagenase digestion (p < 0.05). ASCs display multilineage differentiation potential in vitro. Autologous plasma is a valid additive for ASCs culturing. eGFP-ASCs, retrieved after 3 months in vivo, differentiated in adipocytes and endothelial cells. Conclusion: A practical method for human ASC isolation and culturing from abdominal lipo-aspirate, without the addition of xenogenic substances, is described. The mechanical protocol is more successful than the current gold standard protocol of enzyme digestion. These results are important in the translation of laboratory-based cell cultures to clinical reconstructive and aesthetic applications

    High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting

    No full text
    For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.status: publishe

    High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting

    No full text
    For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro
    corecore