7,769 research outputs found

    Kerr black hole lensing for generic observers in the strong deflection limit

    Get PDF
    We generalize our previous work on gravitational lensing by a Kerr black hole in the strong deflection limit, removing the restriction to observers on the equatorial plane. Starting from the Schwarzschild solution and adding corrections up to the second order in the black hole spin, we perform a complete analytical study of the lens equation for relativistic images created by photons passing very close to a Kerr black hole. We find out that, to the lowest order, all observables (including shape and shift of the black hole shadow, caustic drift and size, images position and magnification) depend on the projection of the spin on a plane orthogonal to the line of sight. In order to break the degeneracy between the black hole spin and its inclination relative to the observer, it is necessary to push the expansion to higher orders. In terms of future VLBI observations, this implies that very accurate measures are needed to determine these two parameters separately.Comment: 17 pages, 4 figures, one section added, to appear on Physical Review

    The Evolution of Primordial Black Holes and their Final Observable Spins

    Full text link
    Primordial black holes in the mass range of ground-based gravitational-wave detectors can comprise a significant fraction of the dark matter. Mass and spin measurements from coalescences can be used to distinguish between an astrophysical or a primordial origin of the binary black holes. In standard scenarios the spin of primordial black holes is very small at formation. However, the mass and spin can evolve through the cosmic history due to accretion. We show that the mass and spin of primordial black holes are correlated in a redshift-dependent fashion, in particular primordial black holes with masses below O(30)M{\cal O}(30)M_\odot are likely non-spinning at any redshift, whereas heavier black holes can be nearly extremal up to redshift z10z\sim10. The dependence of the mass and spin distributions on the redshift can be probed with future detectors such as the Einstein Telescope. The mass and spin evolution affect the gravitational waveform parameters, in particular the distribution of the final mass and spin of the merger remnant, and that of the effective spin of the binary. We argue that, compared to the astrophysical-formation scenario, a primordial origin of black hole binaries might better explain the spin distribution of merger events detected by LIGO-Virgo, in which the effective spin parameter of the binary is compatible to zero except possibly for few high-mass events. Upcoming results from LIGO-Virgo third observation run might reinforce or weaken these predictions.Comment: 13 figures, 31 pages. v2: Section and appendix added. Results unchange

    A candidate optical counterpart to the middle-aged gamma-ray pulsar PSR J1741-2054

    Get PDF
    We carried out deep optical observations of the middle-aged γ\gamma-ray pulsar PSR J1741-2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes mv=23.10±0.05m_v=23.10\pm0.05 and mv=25.32±0.08m_v=25.32\pm0.08, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741-2054. The nebula is displaced by \sim 0\farcs9 (at the 3σ3\sigma confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra, down to a surface brightness limit of 28.1\sim 28.1 magnitudes arcsec2^{-2}. Future observations are needed to confirm the optical identification of PSR J1741-2054 and characterise the spectrum of its counterpart.Comment: 8 pages, 3 figures, Astrophysical Journal, in pres

    Observations of three young gamma-ray pulsars with the Gran Telescopio Canarias

    Get PDF
    We report the analysis of the first deep optical observations of three isolated γ\gamma-ray pulsars detected by the {\em Fermi Gamma-ray Space Telescope}: the radio-loud PSR\, J0248+6021 and PSR\, J0631+1036, and the radio-quiet PSR\, J0633+0632. The latter has also been detected in the X rays. The pulsars are very similar in their spin-down age (τ\tau \sim40--60 kyrs), spin-down energy (E˙1035\dot{E} \sim10^{35} erg s1^{-1}), and dipolar surface magnetic field (B3B \sim 3--5×10125\times10^{12} G). These pulsars are promising targets for multi-wavelength observations, since they have been already detected in γ\gamma rays and in radio or X-rays. None of them has been detected yet in the optical band. We observed the three pulsar fields in 2014 with the Spanish 10.4m Gran Telescopio Canarias (GTC). We could not find any candidate optical counterpart to the three pulsars close to their most recent radio or {\em Chandra} positions down to 3σ3 \sigma limits of g27.3g'\sim27.3, g27g'\sim27, g27.3g'\sim27.3 for PSR\, J0248+6021, J0631+1036, and J0633+0632, respectively. From the inferred optical upper limits and estimated distance and interstellar extinction, we derived limits on the pulsar optical luminosity. We also searched for the X-ray counterpart to PSR\, J0248+6021 with \chan\ but we did not detect the pulsar down to a 3σ\sigma flux limit of 5×10145 \times 10^{-14} erg cm2^{-2} s1^{-1} (0.3--10 keV). For all these pulsars, we compared the optical flux upper limits with the extrapolations in the optical domain of the γ\gamma-ray spectra and compared their multi-wavelength properties with those of other γ\gamma-ray pulsars of comparable age.Comment: 12 pages, 5 figures, accepted for publication in MNRA

    Testing the specificity of predictors of reading, spelling and maths: a new model of the association among learning skills based on competence, performance and acquisition

    Get PDF
    In a previous study (Zoccolotti et al., 2020) we examined reading, spelling, and maths skills in an unselected group of 129 Italian children attending fifth grade by testing various cognitive predictors; results showed a high degree of predictors’ selectivity for each of these three behaviors. In the present study, we focused on the specificity of the predictors by performing cross-analyses on the same dataset; i.e., we predicted spelling and maths skills based on reading predictors, reading based on maths predictors and so on. Results indicated that some predictors, such as the Orthographic Decision and the Arithmetic Facts tests, predicted reading, spelling and maths skills in similar ways, while others predicted different behaviors but only for a specific parameter, such as fluency but not accuracy (as in the case of RAN), and still others were specific for a single behavior (e.g., Visual-auditory Pseudo-word Matching test predicted only spelling skills). To interpret these results, we propose a novel model of learning skills separately considering factors in terms of competence, performance and acquisition (automatization). Reading, spelling and calculation skills would depend on the development of discrete and different abstract competences (accounting for the partial dissociations among learning disorders reported in the literature). By contrast, overlap among behaviors would be accounted for by defective acquisition in automatized responses to individual “instances”; this latter skill is item specific but domain independent. Finally, performance factors implied in task’s characteristics (such as time pressure) may contribute to the partial association among learning skills. It is proposed that this new model may provide a useful base for interpreting the diffuse presence of comorbidities among learning disorders

    Semantic annotations on heritage models: 2D/3D approaches and future research challenges

    Get PDF
    Research in the field of Cultural Heritage is increasingly moving towards the creation of digital information systems, in which the geometric representation of an artifact is linked to some external information, through meaningful tags. The process of attributing additional and structured information to various elements in a given digital model is customarily identified with the term semantic annotation; the added contextual information is associated, for instance, to analysis and conservation terms. Starting from the existing literature, aim of this work is to discuss how semantic annotations are used, in digital architectural heritage models, to link the geometrical representation of an artefact with knowledge-related information. Most consolidated methods -such as traditional mapping on 2D media, are compared with more recent approaches making the most of 3D representation. Reference is made, in particular, to Heritage-BIM techniques and to collaborative reality-based platforms, such as Aïoli (http://aioli.cloud). Potentialities and limits of the different solutions proposed in literature are critically discussed, also addressing future research challenges in Cultural Heritage application fields

    Easy tuning of nanotexture and N doping of carbonaceous particles produced by spark discharge

    Get PDF
    A better understanding of the effects of carbonaceous particulates in air pollution on human health and on the transmission of viruses requires studies with artificially produced aerosols that mimic the real ones. To produce such aerosols, methods to precisely tailor the morphology as well as the physical and chemical properties of carbon-based nanomaterials are crucial. Here we describe a facile and flexible approach to produce carbon-based nanoparticles with tailored N content by spark discharge utilizing graphite rods. Carbon-based nanoparticles with different nanotexture and N doping could be obtained by simply changing dilution gas (nitrogen, argon) and dilution gas purity (99 and 99.999%). The effect of the discharge frequency (50, 300 Hz) was also explored. The carbon-based nanoparticles were characterized by Fourier transform infrared and X-ray photoelectron spectroscopy, thermogravimetric analysis, and transmission electron microscopy. We find that the nanotexture is strictly linked to the chemical reactivity and to the surface chemistry. The use of N2 as dilution gas allowed for the incorporation of significant amounts of nitrogen (5–7 wt.%) in the carbonaceous particle network mainly as pyrrolic N, graphitic N and N-oxide functional groups

    Impact of combination chemotherapy on toxicity in ovarian cancer: Systematic revision of literature and meta-analysis

    Get PDF
    The purpose of this statistical analysis is to demonstrate the real advantages in terms of cost-benefit of combination chemotherapy compared with single-agent chemotherapy. The trials, which are used in this meta-analysis, have been searched on PubMed database and they are phase II or randomized phase III studies with only chemotherapy regimens. In this meta-analysis were evaluated adverse effects with odds ratio (OR), which is expressed in 95% confidence intervals (95% CI). Only 4 studies contained all the set selection criteria and they were selected. The data, which were obtained, were analyzed using MedCalc Application. The combination therapy was more strongly linked to certain adverse events than to chemotherapy with a single agent: thrombocytopenia, anemia, neutropenia and nausea. The data obtained for leukopenia, for vomiting and for stomatitis are not statistically significant, as well as those of antitumor activity. Obtained data allow us to state that the overall combination therapy is more closely related to adverse effects such as thrombocytopenia, anemia, neutropenia and nausea compared tosingle-agent chemotherapy

    Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ion release in the cytosol

    Get PDF
    Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag+ ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag+ chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag+ ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs
    corecore