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a b s t r a c t 

A better understanding of the effects of carbonaceous particulates in air pollution on human health and 

on the transmission of viruses requires studies with artificially produced aerosols that mimic the real 

ones. To produce such aerosols, methods to precisely tailor the morphology as well as the physical and 

chemical properties of carbon-based nanomaterials are crucial. Here we describe a facile and flexible 

approach to produce carbon-based nanoparticles with tailored N content by spark discharge utilizing 

graphite rods. Carbon-based nanoparticles with different nanotexture and N doping could be obtained 

by simply changing dilution gas (nitrogen, argon) and dilution gas purity (99 and 99.999%). The effect of 

the discharge frequency (50, 300 Hz) was also explored. The carbon-based nanoparticles were character- 

ized by Fourier transform infrared and X-ray photoelectron spectroscopy, thermogravimetric analysis, and 

transmission electron microscopy. We find that the nanotexture is strictly linked to the chemical reactiv- 

ity and to the surface chemistry. The use of N 2 as dilution gas allowed for the incorporation of significant 

amounts of nitrogen (5–7 wt.%) in the carbonaceous particle network mainly as pyrrolic N, graphitic N 

and N-oxide functional groups. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Carbonaceous particulates from coal, fuel or wood combustion 

re harmful to human health and responsible for many chronic dis- 

ases, including cardiopulmonary and metabolic diseases, neurode- 

enerative conditions, cancer and low birthweight [1] . In addition, 

n the past years, several papers correlated atmospheric and mete- 

rological scenarios to the outbreak of flu epidemics, like SARS and 

ERS [ 2 , 3 ]. Various studies undertaken since the start of the cur- 

ent COVID 19 outbreak point to the possibility that airborne par- 

iculate matter may be associated with an increased risk of SARS- 

oV-2 transmission [4–6] . A high concentration of particulate mat- 

er has been suggested as possible co-factor in the transmission of 

he SARS-CoV-2, in order to explain the violent spread of the virus 

n highly industrialized and polluted areas [5–16] . 

This calls for more systematic investigations of the interactions 

etween viruses and cells with particulate matter, which in turn 

equire the easily reproducible generation of particles with pre- 
∗ Corresponding author at: CNR-STEMS, Naples, Italy. 

E-mail address: michela.alfe@stems.cnr.it (M. Alfè). 
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ictable characteristics to mimic the airborne ones. An attractive 

ool for this purpose are Spark Discharge Generators (SDGs), where 

arbonaceous particles are produced through the vaporization of 

wo graphite electrodes between which a tunable high voltage is 

pplied. These particles, generated as aerosol, have been widely 

sed in most studies involving human inhalation and exposure 

o mimic carbonaceous particles typically formed in combustion 

nvironment (flames, engines) [17] . A number of studies [ 18 , 19 ] 

lso employ SDG-generated carbonaceous particles as soot model 

or diesel engine soot or carbon black because of their compara- 

le mobility diameters and surface features and because SDGs of- 

er the possibility to reproduce the differences between these two 

lasses of particles by simply employing different discharge condi- 

ions. 

The use of SDGs for the production of nanotextured particles 

s driven by several advantages of this technique, namely an easy 

peration, which allows for excellent control, reproducibility, and 

ersatility of the type of particles generated, as well as the pos- 

ibility to easily achieve reasonable yields using several SDGs in 

arallel [20] . By acting on the operative parameters (rod com- 

osition, spark discharge frequency, dilution gasses) [ 21 , 22 ] it is 

ossible to incorporate different elements in the generated parti- 
under the CC BY-NC-ND license 
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Table 1 

Sample production conditions and labeling. 

Sample Dilution gas Gas purity Spark frequency, Hz 

P-hpAr-50 Ar High 50 

P-hpAr-300 Ar High 300 

P-lpAr-50 Ar Low 50 

P-lpAr-300 Ar Low 300 

P-hpN 2 –50 N 2 High 50 

P-hpN 2 –300 N 2 High 300 

P-lpN 2 –50 N 2 Low 50 

P-lpN 2 –300 N 2 Low 300 
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les and to finely control the particle size distribution, and overall 

he chemical-physical features, including morphology at nanoscale 

evel. An important feature of the carbonaceous nanoparticles gen- 

rated by SDGs is their high surface purity [23] , i.e . undesirable 

ombustion byproducts as tar-like species or polycyclic aromatic 

ydrocarbons are absent. 

A recent study by Hagen et al . (2020) showed that when spark 

ischarge soot is produced using either argon or nitrogen as dilu- 

ion gas, different amounts of N can be incorporated and not only 

he structure but also the reactivity can be modified. This is rel- 

vant both for the production of N-doped carbonaceous aerosols 

nd for the use of such aerosols as model soot in specific exper- 

ments (soot reactivity, pressure drop and collection efficiency of 

articulate filters [22] ). However, the influence of dilution gas pu- 

ity has not been explored yet and a systematic analysis of the 

hemical functional groups introduced when using different dilu- 

ion gasses is still missing. 

This work closes this knowledge gap by investigating carbona- 

eous nanoparticles generated in a Palas GfG 10 0 0 spark discharge 

ystem [ 19 , 24 ]. When operated with graphite electrodes, the car- 

on vapor generated in the arc discharge condenses into small pri- 

ary particles, which then aggregate in clusters; these clusters can 

ndergo further nucleation/condensation processes to form larger 

articles depending on the precise operation conditions. This work 

xplores how the N incorporation as well as the surface func- 

ional groups and the chemical reactivity of carbonaceous parti- 

les produced from graphite rods in this type of discharge sys- 

em can be tailored by acting on three parameters: dilution gasses 

nitrogen, argon), dilution gasses purity and discharge frequency 

50, 300 Hz). The chemical reactivity and the surface chemistry of 

he particles were evaluated by thermogravimetric analysis (TGA), 

-ray photoelectron spectroscopy (XPS) and Fourier transform in- 

rared spectroscopy (FTIR). Results concerning the elemental com- 

osition of the particles as well as the type and quantity of chemi- 

al bonds present, were correlated with the SDG operating param- 

ters, and these findings were linked to the corresponding mor- 

hology and internal structural characteristics inferred from trans- 

ission electron microscopy (HRTEM) images. 

. Materials and methods 

All the chemicals (ACS grade) used in this study were purchased 

rom Merck - Life Science Srl (Milan, Italy). 

.1. Particles production 

In the aerosol generator (GfG 10 0 0, Palas GmbH, Karlsruhe), 

wo 6 mm diameter graphite rod electrodes (purity 99.999%) were 

ounted at a distance of about 2 mm from one another and an 

rgon shielding stream (3.5 L/min carrier gas flow, purity 99.999%) 

as fed through a narrow slit into the space between the elec- 

rodes to prevent oxidation of the carbon at high temperature and 

o act as carrier gas for removing all primary particles and ions 

etween the electrodes before the next spark [22] . 

At the chamber exit, the aerosol was diluted in a concentric 

nnular nozzle by nitrogen or argon delivered at a flow rate of 

0 L/min. Gasses of minimum purity 99 and 99.999% were em- 

loyed. The nominal amount of O 2 was 3 ppm in the case of low 

urity gasses and lower in the case of high purity gasses. The spark 

ischarge frequency was set to 50 or to 300 Hz and the carrier 

as flow rate (high purity Ar in all cases) to 3.5 L/min. In total 

ight different samples were produced via the spark generator, four 

ith Ar and four with N 2 as dilution gas and for both gasses, both 

urities were tested with both spark frequencies; the correspond- 

ng sample names are reported in Table 1 . The samples were col- 

ected on a polytetrafluoroethylene (PTFE) filter (Fluoropore, Milli- 
2 
ore, 0.45 μm porosity) located downstream of the generator, dur- 

ng a sampling time of 30 min each, and analyzed off-line. 

.2. Characterization methods 

The elemental composition of the materials was estimated by 

 CHN 628 LECO elemental analyzer and using ethylene diamine 

etraacetic acid (EDTA) as standard. The C, H, N contents were ex- 

ressed as atomic percentage; the O content was evaluated by dif- 

erence. Each measurement was repeated three times. 

TGA was conducted in oxidative environment (air) on a Perkin–

lmer STA60 0 0 thermogravimetric analyzer (gas flux 40 mL/min) 

rom 50 °C up to 800 °C at a heating rate of 10 °C/min. Samples

f approximately 5 mg were loaded in an alumina crucible ther- 

ally pre-conditioned up to 950 °C for an accurate evaluation of 

he mass losses. 

FTIR spectra in the 450–40 0 0 cm 

−1 range were recorded on 

 Perkin-Elmer Frontier MIR spectrophotometer in transmittance 

ode. The spectra were acquired on KBr pellets (1 wt.%); each 

pectrum was the sum of 8 scans and the resolution was set to 

 cm 

−1 . 

Transmission electron microscopy (TEM) and high-resolution 

EM (HRTEM) imaging was performed on a FEI Tecnai G2 F20 

ransmission electron microscope equipped with a field-emission 

un which was operated at 200 kV. A Gatan camera (BM- 

ltraScan) was used to acquire the TEM images and the samples 

ere observed at magnifications ranging from 2 × 10 5 to 1 × 10 6 . 

he preparation of the samples was the following: the powders 

ere dispersed in ethanol, then a droplet of this suspension was 

eposited onto a 200 mesh lacey carbon on Cu grid TEM sample 

older and allowed to dry at room temperature. 

XPS spectra were collected using a Surface Science SSX-100 

SCA instrument with a mono-chromatic Al K α X-ray source 

h ν = 1486.6 eV). The samples were dispersed in chloroform and 

 small drop of the suspension was left to dry in air on a 150 nm

hick gold film supported on mica (prepared as detailed in [25] ). 

he pressure in the measurement chamber was maintained be- 

ow 1 × 10 -9 mbar; the electron take-off angle with respect to 

he surface normal was 37 ° and the analyzed spot had a diam- 

ter of 10 0 0 μm. The energy resolution was set to 1.26 eV for 

oth the survey spectra and the detailed spectra of the C1 s , N1 s ,

nd O1 s core level regions. Binding energies are referenced to the 

1 s peak centered at a binding energy of 284.8 eV [26] . All XPS 

pectra were analyzed using the least-squares curve-fitting pro- 

ram Winspec (developed in the LISE laboratory of the Univer- 

ity of Namur, Belgium). Deconvolution of the spectra included a 

hirley [27] baseline subtraction and fitting with a minimum num- 

er of peaks consistent with the chemical structure of the sample, 

onsidering the experimental resolution. The profile of the peaks 

as taken as a convolution of Gaussian and Lorentzian functions; 

eak positions are reported ±0.1 eV when deduced from a fit. The 

ncertainty in the peak intensity determination is 2% for the C1 s 

nd O1 s core level regions, 4% for the N1 s core level region. 
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Fig. 1. Survey scan of carbon nanoparticles produced with high and low purity Ar (panel (a)) or with high and low purity N 2 (panel (b)) as dilution gas and two different 

spark frequencies. 

Table 2 

Chemical composition of the carbonaceous nanostructures estimated from elemental analysis (EA) and from X-ray photoelectron spectroscopy (XPS). 

Sample C, at.%(EA) H, at.%(EA) O, at.%(EA) N, at.%(EA) C, at.%(XPS) O, at.%(XPS) N, at.%(XPS) 

P-hpAr-50 70.2 15.2 13.9 0.6 80.1 18.4 1.5 

P-hpAr-300 70.2 13.4 14.4 2.0 81.6 16.7 1.7 

P-lpAr-50 83.0 0 13.3 3.7 79.0 17.3 3.7 

P-lpAr-300 79.1 3.7 16.6 0.6 80.8 17.7 1.5 

P-hpN 2 –50 78.1 5.9 10.1 5.8 82.1 10.8 7.2 

P-hpN 2 –300 77.6 10.1 6.2 6.1 85.3 9.3 5.4 

P-lpN 2 –50 72.9 14.1 8.2 4.7 79.6 16.0 4.4 

P-lpN 2 –300 80.5 3.6 10.8 5.0 78.7 15.5 5.8 
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. Results and discussion 

XPS spectroscopy provides insight on the elemental composi- 

ion of the carbon nanostructures as well as on the chemical en- 

ironment of the elements detected, while FTIR spectroscopy in- 

orms on the type of chemical bonds present. XPS survey scans of 

he nanoparticles produced with Ar and N 2 are shown in Fig. 1 . All 

he expected elements are observed; C and O are the main con- 

tituents of the nanostructures produced with Ar as dilution gas, 

hile a significant presence of N is observed when the dilution 

as was N 2 . The Au signature is ascribed to the gold surface where 

he samples were deposited, while the traces of iodine detected for 

wo samples prepared using N 2 as dilution gas can be attributed to 

ontamination in the low purity N 2 . 

Since X-ray photoelectron spectroscopy probes the near sur- 

ace region, while elemental analysis (EA) gives information on the 

hole sample, in Table 2 the results of both techniques are com- 

ared. Note that XPS cannot detect hydrogen but is a quantita- 

ive technique, i.e. the atomic percentage of all elements present 

an be deduced from the intensity of the respective photoemis- 

ion lines. A good general agreement is found between EA and XPS 

esults. The particles produced with Ar as dilution gas present a 

uite constant O and N incorporation and no significant depen- 

ence on dilution gas purity is detected. The particles produced 

ith N 2 as dilution gas present a higher N content up to 7 wt.%. 

he higher N content observed in this case agrees with the inte- 

ration of more N into the carbon network, as observed in plasma 

rocesses carried out in pure nitrogen [28] . The N content resulted 
3 
lightly lower when low purity N 2 instead of high purity N 2 was 

sed as dilution gas. This could be due to the competing incorpo- 

ation of O, as confirmed by the fact that this element presents an 

nverse trend compared to N, namely more O incorporation occurs 

hen low purity N 2 is used and less when high purity N 2 is em- 

loyed. 

The chemical environment of carbon, oxygen and nitrogen was 

valuated by deconvoluting the C1 s , O1 s and N1 s XPS spectra 

hown in Figs. 2 and 3 and summarized in Table 3 , where the re- 

ults of the fits in terms of binding energies (B.E.s), attribution of 

he various components to the type of bond, and relative contribu- 

ion to the total spectral intensity are reported. 

The C1 s spectra of all samples ( Figs. 2 (a) and 3(a)) require six 

omponents to obtain a good fit; the main component at a B.E. 

f 284.8 eV (marked in blue in Figs. 2 (a) and 3(a)) can be as- 

ribed to C 

–C/C = C species, while the other peaks located at about 

85.9 eV, 287.0 and 288.2 eV and 289.5 eV can be assigned to 

 

–O/C 

–N (red), C 

–O-C (green), C = O (yellow), COOH (pink) bonds, 

espectively [29–32] . Moreover, the shake-up satellite (light green) 

t about 291.1 eV is typical for the presence of aromatic carbon. 

The spectra of the O1 s core level region of all samples are 

resented in Figs. 2 (b) and 3(b), and contain three contributions; 

he peak at a B.E. of about 532.0 eV derives from C = O species 

marked in yellow in Figs. 2 (b) and 3(b)), while the components 

entered at about 533.2 eV and 534.6 eV correspond to C 

–O bond 

red) and adsorbed water (light blue), respectively [33] . 

The presence of N and the type of bonds in which it is in- 

olved is determined by the N1 s photoemission lines. The N1 s 
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Fig. 2. XPS spectra of the C1 s (a), O1s (b) and N1 s (c) core level regions of carbon nanoparticles produced with high and low purity Ar as dilution gas and two different 

spark frequencies and corresponding fits (full lines); for the differently colored peaks see text. 

Fig. 3. XPS spectra of the C1 s (a), O1 s (b) and N1 s (c) core level regions of carbon nanoparticles produced with high and low purity N 2 as dilution gas and two different 

spark frequencies and corresponding fits (full lines); for the differently colored peaks see text. 

4 
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Table 3 

Binding energies and percentages indicating how much the component contributes to the total C1 s , N1 s and O1 s intensity; these percentages indicate the relative amounts 

of C, N, O atoms involved in each type of bond as deduced from the XPS measurements. 

P-hpAr-50 P-hpAr-300 P-lpAr-50 P-lpAr-300 P-hpN 2 –50 P-hpN 2 –300 P-lpN 2 –50 P-lpN 2 –300 

Bond type B.E. (eV) FWHM (eV) % % % % % % % % 

C1 s C-C/C = C 284.8 1.4–1.5 52.9 53.1 55.4 53.3 48.9 52.1 56.8 53.2 

C-OH/C –N 285.9 1.4–1.5 21.8 21.4 22.0 21.7 24.4 23.0 21.4 23.1 

C-O-C 286.9–287.1 1.4–1.5 12.2 11.9 10.4 12.0 12.4 11.3 10.2 11.5 

C = O 288.1–288.6 1.4–1.5 6.9 6.7 6.1 6.7 6.5 5.7 6.0 6.0 

COOH 289.5–289.6 1.4–1.5 4.0 4.2 4.6 3.7 3.8 3.7 3.5 3.8 

satellite 291.0–291.6 2.5 2.2 2.7 1.5 2.6 4.0 4.2 2.1 2.4 

N1 s pyrrolic 399.7–400.3 1.9–2.3 80.8 85.0 59.9 66.8 63.0 68.4 43.1 66.7 

graphitic 401.1–401.6 1.9–2.3 – – 33.5 25.7 30.8 26.0 41.1 29.0 

N-oxides 402.0–405.3 1.9–2.3 19.2 15.0 6.6 7.5 6.2 5.6 15.8 4.3 

O1 s C = O 531.9 −532.2 2.4 12.5 16.2 20.4 11.4 35.0 34.7 30.8 21.5 

C-OH 533.1–533.3 2.4 80.6 76.9 63.6 79.0 53.3 50.6 57.6 64.8 

Adsorbed H 2 O 534.3–535.0 2.4 7.0 6.9 16.0 9.6 11.7 14.7 11.6 13.7 
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Fig. 4. FTIR spectra of carbon nanoparticles produced with high and low purity Ar 

(top panel) or with high and low purity N 2 (bottom panel) as dilution gas and two 

different spark frequencies. 
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pectra were deconvoluted into two or three contributions and the 

ypes of N-containing functionalities are reported in Table 3 . The 

PS spectra indicate the presence of pyrrolic N (marked in red in 

igs. 2 (c) and 3(c)), where one N atom is connected with two C 

toms and one H atom in a five-membered ring; N-oxide func- 

ional groups (purple) as well as two types of graphitic N (brown), 

amely N atoms located either in the middle of a graphene seg- 

ent or at graphite zigzag edges or vacancy sites [34–36] . It is 

lso evident in Figs. 2 and 3 that when lower purity Ar or N 2 

re used as dilution gas, (samples P-lpAr-50, P-lpAr-300, P-hpN 2 –

0, P-hpN 2 –300, P-lpN 2 –50, P-lpN 2 –300) more N is incorporated 

nto the graphitic network (graphitic N) rather than as peripheral 

 (pyrrolic-type N). When higher purity Ar is employed as dilu- 

ion gas (samples P-hpAr-50 and P-hpAr-300) we still observe the 

resence of N (whose source comes supposedly from the gas im- 

urities, N 2 < 5 ppm in the case of high purity Ar) but only in the

orm of N-oxide and pyrrolic N. 

The FTIR spectra are reported in Fig. 4 ; the spectra are baseline- 

orrected, height-normalized and shifted for clarity. 

All eight samples absorb very similarly and their infrared sig- 

als are mostly located in three regions: i) between 3100 and 3600 

m 

−1 , where broad bands due to exchangeable protons from N- 

nd O-containing functional groups and adsorbed water are ob- 

erved; ii) between 2800 and 3100 cm 

−1 , where one sees low- 

ntensity signals ascribable to the stretching vibrations of aromatic 

nd aliphatic C − H groups, probably arising from impurities in the 

raphite rods and in the argon carrier gas as already observed in 

37–39] ; iii) between 1750 and 10 0 0 cm 

−1 , where signals ascrib- 

ble to the stretching and bending vibrations of different O and 

-containing functional groups and of adsorbed water overlap. 

In all the cases the region below 1800 cm 

−1 is the richer in 

ignals and the two types of samples show significant differences. 

n Fig. 5 an enlarged view of the FTIR spectra in the region be- 

ween 2300 and 900 cm 

−1 is reported, contrasting particles gen- 

rated with either Ar or N 2 in comparable conditions to better ev- 

dence differences and similarities. In the case of particles gener- 

ted with Ar, the main absorption band at 1650 cm 

−1 is ascribed 

o the stretching of C = C in an aromatic network, the shoulder at 

720 cm 

−1 stems from the stretching of C = O in carbonyl and car- 

oxylic groups, while the peaks at 1450, 1395, 1280, 1120 and 1075 

m 

−1 are associated mainly with stretching and bending modes of 

ifferent C 

–O containing groups [40–46] . 

In the case of the particles produced with N 2 , bands associated 

ith the presence of N can clearly be observed. The signal at 2200 

m 

−1 is ascribable to the C 

–N triple bond stretching [46] , the main 

and around 1600 cm 

−1 is assigned to overlapping signals from 

 = C and C = N stretching vibrations [ 44 , 46 ], while the shoul-

er at 1710 cm 

−1 is associated with the stretching of C = O bonds. 

he signals at 1455, 1390, 1365, 1280, 1125, and 1075 cm 

−1 de- 
5 
ive mainly from stretching and bending modes of different C 

–O 

ontaining groups [40–46] , suggesting the presence of the same 

xygen containing groups present on the surface of the particles 

roduced with Ar. Moreover, a band at 1210 cm 

−1 associated with 

he stretching mode of C 

–N bonds [47] is present, and this band is 

ost intense for the particles produced with the lower spark dis- 

harge frequency and the higher purity of the dilution gas ( Fig. 5 ). 

As expected, the intensities of the bands around 1600 cm 

−1 and 

t 1210 cm 

−1 associated with N-containing groups are higher in 

he case of particles produced using N 2 as dilution gas. The inten- 

ities of these bands as well as of that related to C = O stretch- 

ng are also influenced by the spark frequency and the gas purity. 

n particular, in the case of the particles produced with N 2 and a 

park discharge frequency of 30 0 Hz, namely P-lpN 2 –30 0 and P- 

pN 2 –300 ( Fig. 5 , panels (c) and (d)), no significant influence of 
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Fig. 5. Enlarged view of the 90 0–230 0 cm 

−1 region of the FTIR spectra of carbon nanoparticles produced with low (panels (a) and(b)) and high purity (panels (c) and (d)) 

dilution gas and two different spark frequencies (50 Hz left panels, 300 Hz right panels). 
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he gas purity is observed, while in the case of particles produced 

t a spark discharge frequency of 50 Hz, namely P-lpN 2 –50 and 

-hpN 2 –50 ( Fig. 5 , panels (a) and (b)), the two main bands associ- 

ted to N-containing groups exhibit a lower intensity and the band 

ssociated to C = O appears as a small shoulder of the main peak 

t around 1600 cm 

−1 . In the case of nanoparticles produced with 

r, interestingly, the influence of the gas purity and the spark dis- 

harge frequency appears to be negligible. 

The HRTEM images reported in Figs. 6 and 7 revealed a clear 

elation between the nature of the dilution gas and the size, struc- 

ure and way of aggregation of the particles. In all of the cases, 

he micrographs evidenced an overall structural inhomogeneity, 

lthough primary particles are sometimes clearly distinguishable. 

he arrangement of the nanostructures does not seem to depend 

n spark discharge frequency with which the particles were gener- 

ted. 

In the case of particles produced with Ar as dilution gas, 

 Fig. 6 ), small and quite widely distributed, well-defined primary 

articles with average diameter ranging from 2 to 5 nm ( Fig. 6 , 

ower panels, circled) are discernible. These particle sizes are con- 

iderably smaller than that of soot typically produced in flames 

nd engine environments [48–52] . Also the particle structure is 

ery different from the typical chain-like structure of combustion 

roducts [48] and shows instead an overall fulleroid shape con- 

isting of short and bent graphenic segments. Closed shells arising 

rom fullerenes are clearly visible on the particles’ surface ( Fig. 6 , 

ower panels, indicated by arrows). The observed structures are 

ypical of GfG soot [ 17-19 , 53 ], characterized by a non-negligible 

xygen content. 

The nanoparticles produced with N 2 as dilution gas have a com- 

letely different structure as seen in the micrographs of Fig. 7: the 

urface is smoother, the particles have more extended graphene 

heets. In such nanoparticles, distinctive multi-layer features at- 
6 
ributable to carbon onions [54] clearly emerge. These structures 

an be described as spherical or polyhedral, defective and disor- 

ered multiple shells with a hollow core extending up to 10 nm. 

The higher curvature of these nanoparticles is driven by the 

ominant presence of pyrrolic N as observed in XPS, which results 

n five-membered rings in the graphenic arrangement. It is worth 

oting that such distinctive features appear to a lower extent when 

he low purity dilution gas is used for producing the P-lpN 2 –300 

articles. 

The TGA profiles of all the carbon nanoparticles produced with 

oth Ar and N 2 as dilution gas ( Fig. 8 ) exhibit a continuous weight

oss with a complete burn off before 750 °C. 

For the most of the particles produced with Ar, the weight loss 

tarts after 200 °C; only the particles produced at low spark fre- 

uency and with low purity gas begin to lose weight already below 

00 °C, pointing out a higher structural inhomogeneity. The deriva- 

ive thermogravimetric (DTG) curves reported in Fig. 8 show for all 

he particles produced with Ar (bottom right panel) a first event 

n the range 300–450 °C and a second important event peaked at 

50 °C. This thermal behavior is in accordance with that reported 

or GfG soot produced with Ar as carrier gas [ 22 , 53 ]. Based on the

iscussion of the TEM images above, we suggest that this first loss 

t about 400 °C corresponds to the combustion of defect-rich pri- 

ary particles [17] . The second weight drop at 600 °C can instead 

e assigned to the combustion of large primary particles or ag- 

lomerates with less defective/functionalized surfaces and, even- 

ually, also of surface-bonded fullerenes produced in the spark- 

ischarge of graphite [53] . Overall, the thermal behavior of the par- 

icles produced with Ar is only slightly influenced by the gas purity 

nd the spark discharge frequency. 

Conversely, the particles produced with N 2 exhibit a quite dif- 

erent thermal behavior, which is clearly influenced by the gas pu- 

ity and the spark discharge frequency. Their DTG curves are char- 
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Fig. 6. TEM images of carbon nanoparticles produced with high and low purity Ar as dilution gas and two different spark frequencies. Nanostructural details in the areas 

marked with the dashed squares are shown enlarged in the images numbered 1 to 8. 

Fig. 7. TEM images of carbon nanoparticles produced with high and low purity N 2 as dilution gas and two different spark frequencies. Nanostructural details in the areas 

marked with the dashed squares are shown enlarged in the images numbered 1 to 8. 

7 
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Fig. 8. Themogravimetric analysis results (left panels) and derivative curves (right panels) of carbon nanoparticles produced with high and low purity Ar (top panels) or 

with high and low purity N 2 (bottom panels) as dilution gas and two different spark frequencies. 
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cterized by only one important peak at 710 °C, a temperature 

igher than those corresponding to the two weight losses of par- 

icles produced with Ar; this points to a lower reactivity towards 

xidation, as also stated by Hagen et al . in a recent work [22] . Sur-

risingly, in most cases between 100 and 350 °C a slight weight 

ncrease is detected; this highlights a propensity of the particles’ 

urface functional groups towards oxygen addition during the heat 

reatment. 

Looking at the TG curves in Fig. 8 (left panels), one concludes 

hat the particles generated with a higher purity gas exhibit a 

ower reactivity towards oxygen since the main weight loss starts 

t a higher temperature. At the same gas purity, the high spark 

requency allows for the production of particles more reactive to- 

ards oxidation, and this effect is more marked in the case of 

articles produced with a low purity dilution gas. Worthy of note 

n the shape of the DTG curve of P-lpN2-300 is also a shoulder 

eaked at 550 °C, indicative of the similarity between these parti- 

les and those produced in an Ar environment. The different oxida- 

ion behavior of particles produced with Ar and with N 2 is strictly 

ssociated with the different microstructures observed by HRTEM 

 Figs. 6 , 7 ). The strongly curved fulleroid structure of the primary 

articles produced with Ar can be easily functionalized with reac- 

ive groups, which are less stable than purely sp 

2 hybridized car- 

on. The higher resistance against oxidation of the particles pro- 

uced with N 2 is most likely due to the larger graphenic crystal- 

ites seen in the HRTEM micrographs ( Fig. 7 ). As a general rule, 

arge crystallites have a lower ratio of edge site to basal plane car- 

on atoms, thus a lower surface area prone to attack of the reactive 

roups [48] . 

. Conclusions 

The characteristics of carbonaceous nanoparticles produced by a 

alas type SDG utilizing graphite rods were investigated to link the 
8 
DG operative parameters to the composition, the chemical groups 

resent and the morphology of the product. It was found that the 

anotexture (and, as a consequence, the chemical reactivity and 

he surface chemistry) of the carbonaceous nanoparticles obtain- 

ble by a SDG system can be easily tuned by using different di- 

ution gasses (nitrogen and argon) at different purity degree. The 

se of N 2 as dilution gas allowed for the incorporation of signifi- 

ant amounts of N (5–7 wt.%) in the carbonaceous particle network 

ainly as pyrrolic, graphitic N and N-oxide functional groups. 

In all the investigated cases the nanostructure and arrangement 

f the particles noticeably differ in some aspects if compared to 

he soot typically emitted from combustion sources and internal 

ombustion engines: 1) the average primary particle sizes are over- 

ll considerably smaller (from 2 to 5 nm in the case of particles 

roduced with Ar as dilution gas and up to 10 nm in the case of 

articles produced with N 2 as dilution gas) and 2) the presence of 

 doping in the C network is scarcely present in soot emitted from 

eal sources. 

As a general consideration, the particles produced with N 2 as 

ilution gas at low purity could best mimic the airborne carbona- 

eous particulates since it well reproduces the smooth surfaces 

ypical of the most real soot with more extended graphene sheets 

ompared to the particles produced with Ar. 

Overall, this study confirms the importance of carefully check- 

ng the operative SDG conditions due to their influence on the 

articles characteristics and this aspect becomes crucial when GfG 

enerated nanoparticle aerosols serve as model soot in specific ex- 

eriments. 
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