393 research outputs found
The Herschel Virgo Cluster Survey. VII. Dust in cluster dwarf elliptical galaxies
We use the science demonstration phase data of the Herschel Virgo Cluster Survey to search for dust emission of early-type dwarf galaxies in the central regions of the Virgo cluster as an alternative way of identifying the interstellar medium. We present the first possible far-infrared detection of cluster early-type dwarf galaxies: VCC781 and VCC951 are detected at the 10σ level in the SPIRE 250 μm image. Both detected galaxies have
dust masses of the order of 10^5 M_⊙ and average dust temperatures ≈20 K. The detection rate (less than 1%) is quite high compared to the 1.7% detection rate for Hi emission, considering that dwarfs in the central regions are more Hi deficient. We conclude that the removal of interstellar dust from dwarf galaxies resulting from ram pressure stripping, harassment, or tidal effects must be as efficient as the removal of interstellar gas
The mass, location and heating of the dust in the Cassiopeia A supernova remnant
We model the thermal dust emission from dust grains heated by synchrotron
radiation and by particle collisions, under conditions appropriate for four
different shocked and unshocked gas components of the Cassiopeia A (Cas A)
supernova remnant (SNR). By fitting the resulting spectral energy distributions
(SEDs) to the observed SNR dust fluxes, we determine the required mass of dust
in each component. We find the observed SED can be reproduced by of silicate grains, the majority of which is in the unshocked
ejecta and heated by the synchrotron radiation field. Warmer dust, located in
the X-ray emitting reverse shock and blastwave regions, contribute to the
shorter wavelength infrared emission but make only a small fraction of the
total dust mass. Carbon grains can at most make up of the total
dust mass. Combined with estimates for the gas masses, we obtain dust-to-gas
mass ratios for each component, which suggest that the condensation efficiency
in the ejecta is high, and that dust in the shocked ejecta clumps is well
protected from destruction by sputtering in the reverse shock.Comment: Accepted by MNRAS, 14 pages, 6 figures. Author accepted manuscript.
Accepted on 05/02/2019. Deposited on 05/02/201
Dust masses and grain size distributions of a sample of Galactic pulsar wind nebulae
We calculate dust spectral energy distributions (SEDs) for a range of grain sizes and compositions, using physical properties appropriate for five pulsar wind nebulae (PWNe) from which dust emission associated with the ejecta has been detected. By fitting the observed dust SED with our models, with the number of grains of different sizes as the free parameters, we are able to determine the grain size distribution and total dust mass in each PWN. We find that all five PWNe require large (≥0.1μm) grains to make up the majority of the dust mass, with strong evidence for the presence of micron-sized or larger grains. Only two PWNe contain non-negligible quantities of small (<0.01μm) grains. The size distributions are generally well-represented by broken power laws, although our uncertainties are too large to rule out alternative shapes. We find a total dust mass of 0.02−0.28M⊙ for the Crab Nebula, depending on the composition and distance from the synchrotron source, in agreement with recent estimates. For three objects in our sample, the PWN synchrotron luminosity is insufficient to power the observed dust emission, and additional collisional heating is required, either from warm, dense gas as found in the Crab Nebula, or higher temperature shocked material. For G54.1+0.3, the dust is heated by nearby OB stars rather than the PWN. Inferred dust masses vary significantly depending on the details of the assumed heating mechanism, but in all cases large mass fractions of micron-sized grains are required
Constraining early-time dust formation in core-collapse supernovae
There is currently a severe discrepancy between theoretical models of dust
formation in core-collapse supernovae (CCSNe), which predict
M of ejecta dust forming within days, and observations at
these epochs, which infer much lower masses. We demonstrate that, in the
optically thin case, these low dust masses are robust despite significant
observational and model uncertainties. For a sample of 11 well-observed CCSNe,
no plausible model reaches carbon dust masses above M, or
silicate masses above M. Optically thick models can
accommodate larger dust masses, but the dust must be clumped and have a low
() covering fraction to avoid conflict with data at optical wavelengths.
These values are insufficient to reproduce the observed infrared fluxes, and
the required covering fraction varies not only between SNe but between epochs
for the same object. The difficulty in reconciling large dust masses with
early-time observations of CCSNe, combined with well-established detections of
comparably large dust masses in supernova remnants, suggests that a mechanism
for late-time dust formation is necessary.Comment: 14 pages, 13 figures. MNRAS accepted 10/07/2
A decade of ejecta dust formation in the Type IIn SN 2005ip
In order to understand the contribution of core-collapse supernovae to the
dust budget of the early universe, it is important to understand not only the
mass of dust that can form in core-collapse supernovae but also the location
and rate of dust formation. SN 2005ip is of particular interest since dust has
been inferred to have formed in both the ejecta and the post-shock region
behind the radiative reverse shock. We have collated eight optical archival
spectra that span the lifetime of SN 2005ip and we additionally present a new
X-shooter optical-near-IR spectrum of SN 2005ip at 4075d post-discovery. Using
the Monte Carlo line transfer code DAMOCLES, we have modelled the blueshifted
broad and intermediate width H, H and He I lines from 48d to
4075d post-discovery using an ejecta dust model. We find that dust in the
ejecta can account for the asymmetries observed in the broad and intermediate
width H, H and He I line profiles at all epochs and that it is
not necessary to invoke post-shock dust formation to explain the blueshifting
observed in the intermediate width post-shock lines. Using a Bayesian approach,
we have determined the evolution of the ejecta dust mass in SN 2005ip over 10
years presuming an ejecta dust model, with an increasing dust mass from
~10 M at 48d to a current dust mass of 0.1 M.Comment: Accepted by MNRAS, 17 pages, 11 figures. Author accepted manuscript.
Accepted on 04/03/19. Deposited on 07/03/1
Dust survival rates in clumps passing through the Cas A reverse shock -- II. The impact of magnetic fields
Dust grains form in the clumpy ejecta of core-collapse supernovae where they
are subject to the reverse shock, which is able to disrupt the clumps and
destroy the grains. Important dust destruction processes include thermal and
kinetic sputtering as well as fragmentation and grain vaporization. In the
present study, we focus on the effect of magnetic fields on the destruction
processes. We have performed magneto-hydrodynamical simulations using AstroBEAR
to model a shock wave interacting with an ejecta clump. The dust transport and
destruction fractions are computed using our post-processing code Paperboats in
which the acceleration of grains due to the magnetic field and a procedure that
allows partial grain vaporization have been newly implemented. For the
oxygen-rich supernova remnant Cassiopeia A we found a significantly lower dust
survival rate when magnetic fields are aligned perpendicular to the shock
direction compared to the non-magnetic case. For a parallel field alignment,
the destruction is also enhanced but at a lower level. The survival fractions
depend sensitively on the gas density contrast between the clump and the
ambient medium and on the grain sizes. For a low-density contrast of ,
e.g., nm silicate grains are completely destroyed while the survival
fraction of m grains is per cent. For a high-density contrast of
, per cent of the nm grains survive while the survival
fraction of m grains is per cent. Alternative clump sizes or dust
materials (carbon) have non-negligible effects on the survival rate but have a
lower impact compared to density contrast, magnetic field strength, and grain
size.Comment: Accepted by MNRAS. Author accepted manuscript. Accepted on
23/01/2023. 24 pages, 21 Figure
HERschel Observations of Edge-on Spirals (HEROES). I: Far-infrared morphology and dust mass determination
Context. Edge-on spiral galaxies with prominent dust lanes provide us with an
excellent opportunity to study the distribution and properties of the dust
within them. The HEROES project was set up to observe a sample of seven large
edge-on galaxies across various wavelengths for this investigation.
Aims. Within this first paper, we present the Herschel observations and
perform a qualitative and quantitative analysis on them, and we derive some
global properties of the far infrared and submillimetre emission.
Methods. We determine horizontal and vertical profiles from the Herschel
observations of the galaxies in the sample and describe the morphology.
Modified black-body fits to the global fluxes, measured using aperture
photometry, result in dust temperatures and dust masses. The latter values are
compared to those that are derived from radiative transfer models taken from
the literature.
Results. On the whole, our Herschel flux measurements agree well with
archival values. We find that the exponential horizontal dust distribution
model often used in the literature generally provides a good description of the
observed horizontal profiles. Three out of the seven galaxies show signatures
of extended vertical emission at 100 and 160 {\mu}m at the 5{\sigma} level, but
in two of these it is probably due to deviations from an exactly edge-on
orientation. Only for NGC 4013, a galaxy in which vertically extended dust has
already been detected in optical images, we can detect vertically extended
dust, and the derived scaleheight agrees with the value estimated through
radiative transfer modelling. Our analysis hints at a correlation between the
dust scaleheight and its degree of clumpiness, which we infer from the
difference between the dust masses as calculated from modelling of optical data
and from fitting the spectral energy distribution of Herschel datapoints.Comment: 21 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysic
Properties of shocked dust grains in supernova remnants
Shockwaves driven by supernovae both destroy dust and reprocess the surviving
grains, greatly affecting the resulting dust properties of the interstellar
medium (ISM). While these processes have been extensively studied
theoretically, observational constraints are limited. We use
physically-motivated models of dust emission to fit the infrared (IR) spectral
energy distributions of seven Galactic supernova remnants, allowing us to
determine the distribution of dust mass between diffuse and dense gas phases,
and between large and small grain sizes. We find that the dense (), relatively cool () gas phase contains
of the dust mass, making the warm dust located in the X-ray emitting
plasma (/) a negligible fraction of
the total, despite dominating the mid-IR emission. The ratio of small
() to large () grains in
the cold component is consistent with that in the ISM, and possibly even
higher, whereas the hot phase is almost entirely devoid of small grains. This
suggests that grain shattering, which processes large grains into smaller ones,
is ineffective in the low-density gas, contrary to model predictions.
Single-phase models of dust destruction in the ISM, which do not account for
the existence of the cold swept-up material containing most of the dust mass,
are likely to greatly overestimate the rate of dust destruction by supernovae.Comment: 13 pages, 12 figures. MNRAS accepte
Revisiting the dust destruction efficiency of supernovae
Dust destruction by supernovae is one of the main processes removing dust from the interstellar medium (ISM). Estimates of the efficiency of this process, both theoretical and observational, typically assume a shock propagating into a homogeneous medium, whereas the ISM possesses significant substructure in reality. We self-consistently model the dust and gas properties of the shocked ISM in three supernova remnants (SNRs), using X-ray and infrared (IR) data combined with corresponding emission models. Collisional heating by gas with properties derived from X-ray observations produces dust temperatures too high to fit the far-IR fluxes from each SNR. An additional colder dust component is required, which has a minimum mass several orders of magnitude larger than that of the warm dust heated by the X-ray emitting gas. Dust-to-gas mass ratios indicate that the majority of the dust in the X-ray emitting material has been destroyed, while the fraction of surviving dust in the cold component is plausibly close to unity. As the cold component makes up virtually all the total dust mass, destruction timescales based on homogeneous models, which cannot account for multiple phases of shocked gas and dust, may be significantly overestimating actual dust destruction efficiencies, and subsequently underestimating grain lifetimes
Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust
We present CO(1-0) and CO(2-1) observations of a sample of 20
star-forming dwarfs selected from the Herschel Virgo Cluster Survey, with
oxygen abundances ranging from 12 + log(O/H) ~ 8.1 to 8.8. CO emission is
observed in ten galaxies and marginally detected in another one. CO fluxes
correlate with the FIR 250 m emission, and the dwarfs follow the same
linear relation that holds for more massive spiral galaxies extended to a wider
dynamical range. We compare different methods to estimate H2 molecular masses,
namely a metallicity-dependent CO-to-H2 conversion factor and one dependent on
H-band luminosity. The molecular-to-stellar mass ratio remains nearly constant
at stellar masses <~ 10 M, contrary to the atomic hydrogen
fraction, M/M, which increases inversely with M. The flattening
of the M/M ratio at low stellar masses does not seem to be related
to the effects of the cluster environment because it occurs for both
HI-deficient and HI-normal dwarfs. The molecular-to-atomic ratio is more
tightly correlated with stellar surface density than metallicity, confirming
that the interstellar gas pressure plays a key role in determining the balance
between the two gaseous components of the interstellar medium. Virgo dwarfs
follow the same linear trend between molecular gas mass and star formation rate
as more massive spirals, but gas depletion timescales, , are not
constant and range between 100 Myr and 6 Gyr. The interaction with the Virgo
cluster environment is removing the atomic gas and dust components of the
dwarfs, but the molecular gas appears to be less affected at the current stage
of evolution within the cluster. However, the correlation between HI deficiency
and the molecular gas depletion time suggests that the lack of gas
replenishment from the outer regions of the disc is lowering the star formation
activity.Comment: 19 pages, 11 figures, accepted for publication in Astronomy &
Astrophysic
- …