36 research outputs found

    Synthesis and structure-activity studies of skeletally modified estradiol analogues

    Get PDF
    In the first phase of this investigation, synthetic approaches to skeletally modified variants of 14,17α-ethanoestra-l,3,5(10)-triene-3,17ÎČ-diol were examined, with the purpose of determining the influence of configurational inversion at C-8, C-9 or C-13 upon the high oral estrogenicity associated with introduction of a 14, 17-ethano bridge into the estradiol skeleton. 3-Methoxyestra-1,3,5(10)-trien-17-one was converted conventionally into the 13α-isomer, which underwent sequential silyl enol ether formation and dehydrosilylation into 3-methoxy-13α-estra-1,3,5(10), 15-tetraen-17-one, which failed to undergo conversion into the corresponding 3-methoxy-13α-estra-1,3 ,5( 10), 14, 16-pentaen-17-yl acetate required for cycloaddition studies. Hydrogenation of 3-methoxyestra-1,3,5( 10),8, 14-pentaen-17ÎČ-yl acetate afforded 3-methoxy-8α-estra-1,3 ,5(10)-trien-17ÎČ-yl acetate, which was converted into 3-methoxy-8α-estra-1,3 ,5(10), 14, 16-pentaen-17-yl acetate. Cycloaddition with phenyl vinyl sulfone gave a mixture of products, which was converted into the desired 14,17α-ethano-8α-estra- 1,3,5(10)-triene-3, 17ÎČ-diol, by a hydrogenation, desulfonylation, deprotection reaction sequence. The unexpectedly complex result for the cycloaddition reaction was interpreted with the assistance of other cycloaddition reactions of the ΔÂč⁎,Âč⁶-dienyl acetate. 17,17-Ethylenedioxy-3-methoxy-9ÎČ-estra-l ,3,5(10)-trien-11-one was readily prepared from estrone using conventional methodology. Deoxygenation followed by standard functional group manipulation afforded 3-methoxy-9ÎČ-estra-1 ,3 ,5(10)-trien-17-one. As a result of the poor overall yield, the optimisation of a number of steps in this reaction sequence was investigated. Despite some improvement in the yields, subsequent conversion into the target, 14, 17a-ethano-9ÎČ-estra-1,3 ,5(10)-triene-3, 17ÎČ-diol was not synthetically useful. However, dehydrogenation of 14, 17α-ethanoestra-1,3,5(10)-triene-3, 17ÎČ-diol followed by standard functional group modification gave 14, 17 a-ethanoestra-1,3 ,5(10),9(11)-tetraene- 3, 17ÎČ-diyl diacetate, hydrogenation of which afforded 14, 17α-ethano-9ÎČ-estra-1 ,3,5(10)triene-3, 17ÎČ-diol, after conventional deprotection, in moderate yield

    Susceptibility to chronic mucus hypersecretion, a genome wide association study

    Get PDF
    Background: Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≄20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25x10-6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3x10 -9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH

    Susceptibility to chronic mucus hypersecretion, a genome wide association study

    Get PDF
    Background: Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations.Methods: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and metaanalysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (&gt;= 20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP).Results: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25610(-6), OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3610 29) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture.Conclusions: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH.</p

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses

    No full text
    Rationale: Airway wall thickness (AWT) is affected by both environmental and genetic factors and is strongly associated with airflow limitation in smaller airways. Objectives: To investigate the genetic component of AWT. Methods: AWT was measured on low-dose computed tomography scans in male heavy smokers participating in a lung cancer screening study (n = 2,640). Genome-wide association studies on AWT were performed under an additive model using linear regression (adjusted for pack-years, lung volume), followed by metaanalysis. An independent cohort was used for validation of the most strongly associated single-nucleotide polymorphisms (SNPs). The functional relevance of significant SNPs was evaluated. Measurements and Main Results: Three significant loci on chromosomes 2q (rs734556; P = 6.2 × 10-7) and 10q (rs10794108, P = 8.6 × 10-8; rs7078439, P = 2.3 × 10-7) were associated with AWTand confirmed in the metaanalysis in cohorts with comparable lung function: P values = 4.6 × 10-8, 7.4 × 10-8, and 7.5 × 10-8, respectively. SNP rs734556 was associated with decreased lung tissue expression of SERPINE2, a susceptibility gene for emphysema. Two nominally significant SNPs showed effects with similar direction: rs10251504 in MAGI2 (P = 5.8 × 10-7) and rs4796712 in NT5C3B (P = 3.1 × 10-6). Higher MAGI2 expression in bronchial biopsies of patients with chronic obstructive pulmonary disease was significantly associated with fewer inflammatory cells. The presence of the NT5C3B risk allele was associated with higher lung tissue expression (P = 1.09 × 10-41). Conclusions: Genetic variants contribute to AWT. Among others, the identified genes are also involved in emphysema, airway obstruction, and bronchial inflammation

    Dissecting the genetics of chronic mucus hypersecretion in smokers with and without COPD

    Get PDF
    Smoking is a notorious risk factor for chronic mucus hypersecretion (CMH). CMH frequently occurs in chronic obstructive pulmonary disease (COPD). The question arises whether the same single-nucleotide polymorphisms (SNPs) are related to CMH in smokers with and without COPD. We performed two genome-wide association studies of CMH under an additive genetic model in male heavy smokers (≄20 pack-years) with COPD (n = 849, 39.9% CMH) and without COPD (n = 1348, 25.4% CMH), followed by replication and meta-analysis in comparable populations, and assessment of the functional relevance of significantly associated SNPs. Genome-wide association analysis of CMH in COPD and non-COPD subjects yielded no genome-wide significance after replication. In COPD, our top SNP (rs10461985, p = 5.43×10(-5)) was located in the GDNF-AS1 gene that is functionally associated with the GDNF gene. Expression of GDNF in bronchial biopsies of COPD patients was significantly associated with CMH (p = 0.007). In non-COPD subjects, four SNPs had a p-value <10(-5) in the meta-analysis, including a SNP (rs4863687) in the MAML3 gene, the T-allele showing modest association with CMH (p = 7.57×10(-6), OR 1.48) and with significantly increased MAML3 expression in lung tissue (p = 2.59×10(-12)). Our data suggest the potential for differential genetic backgrounds of CMH in individuals with and without COPD
    corecore