23 research outputs found

    Machine learning for developing a prediction model of hospital admission of emergency department patients:Hype or hope?

    Get PDF
    Objective: Early identification of emergency department (ED) patients who need hospitalization is essential for quality of care and patient safety. We aimed to compare machine learning (ML) models predicting the hospitalization of ED patients and conventional regression techniques at three points in time after ED registration. Methods: We analyzed consecutive ED patients of three hospitals using the Netherlands Emergency Department Evaluation Database (NEED). We developed prediction models for hospitalization using an increasing number of data available at triage, similar to 30 min (including vital signs) and similar to 2 h (including laboratory tests) after ED registration, using ML (random forest, gradient boosted decision trees, deep neural networks) and multivariable logistic regression analysis (including spline transformations for continuous predictors). Demographics, urgency, presenting complaints, disease severity and proxies for comorbidity, and complexity were used as covariates. We compared the performance using the area under the ROC curve in independent validation sets from each hospital. Results: We included 172,104 ED patients of whom 66,782 (39 %) were hospitalized. The AUC of the multi-variable logistic regression model was 0.82 (0.78-0.86) at triage, 0.84 (0.81-0.86) at similar to 30 min and 0.83 (0.75-0.92) after similar to 2 h. The best performing ML model over time was the gradient boosted decision trees model with an AUC of 0.84 (0.77-0.88) at triage, 0.86 (0.82-0.89) at similar to 30 min and 0.86 (0.74-0.93) after similar to 2 h. Conclusions: Our study showed that machine learning models had an excellent but similar predictive performance as the logistic regression model for predicting hospital admission. In comparison to the 30-min model, the 2-h model did not show a performance improvement. After further validation, these prediction models could support management decisions by real-time feedback to medical personal

    Evaluation of the performance of algorithms mapping EORTC QLQ-C30 onto the EQ-5D index in a metastatic colorectal cancer cost-effectiveness model

    Get PDF
    BACKGROUND: Cost-effectiveness models require quality of life utilities calculated from generic preference-based questionnaires, such as EQ-5D. We evaluated the performance of available algorithms for QLQ-C30 conversion into EQ-5D-3L based ut

    A Bayesian approach to predictive uncertainty in chemotherapy patients at risk of acute care utilizationResearch in context

    No full text
    Summary: Background: Machine learning (ML) predictions are becoming increasingly integrated into medical practice. One commonly used method, ℓ1-penalised logistic regression (LASSO), can estimate patient risk for disease outcomes but is limited by only providing point estimates. Instead, Bayesian logistic LASSO regression (BLLR) models provide distributions for risk predictions, giving clinicians a better understanding of predictive uncertainty, but they are not commonly implemented. Methods: This study evaluates the predictive performance of different BLLRs compared to standard logistic LASSO regression, using real-world, high-dimensional, structured electronic health record (EHR) data from cancer patients initiating chemotherapy at a comprehensive cancer centre. Multiple BLLR models were compared against a LASSO model using an 80–20 random split using 10-fold cross-validation to predict the risk of acute care utilization (ACU) after starting chemotherapy. Findings: This study included 8439 patients. The LASSO model predicted ACU with an area under the receiver operating characteristic curve (AUROC) of 0.806 (95% CI: 0.775–0.834). BLLR with a Horseshoe+ prior and a posterior approximated by Metropolis–Hastings sampling showed similar performance: 0.807 (95% CI: 0.780–0.834) and offers the advantage of uncertainty estimation for each prediction. In addition, BLLR could identify predictions too uncertain to be automatically classified. BLLR uncertainties were stratified by different patient subgroups, demonstrating that predictive uncertainties significantly differ across race, cancer type, and stage. Interpretation: BLLRs are a promising yet underutilised tool that increases explainability by providing risk estimates while offering a similar level of performance to standard LASSO-based models. Additionally, these models can identify patient subgroups with higher uncertainty, which can augment clinical decision-making. Funding: This work was supported in part by the National Library Of Medicine of the National Institutes of Health under Award Number R01LM013362. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

    Predicting Depression Risk in Patients with Cancer Using Multimodal Data

    No full text
    When patients with cancer develop depression, it is often left untreated. We developed a prediction model for depression risk within the first month after starting cancer treatment using machine learning and Natural Language Processing (NLP) models. The LASSO logistic regression model based on structured data performed well, whereas the NLP model based on only clinician notes did poorly. After further validation, prediction models for depression risk could lead to earlier identification and treatment of vulnerable patients, ultimately improving cancer care and treatment adherence.ISSN:0926-9630ISSN:1879-836

    Predicting Depression Risk in Patients With Cancer Using Multimodal Data: Algorithm Development Study

    No full text
    BackgroundPatients with cancer starting systemic treatment programs, such as chemotherapy, often develop depression. A prediction model may assist physicians and health care workers in the early identification of these vulnerable patients. ObjectiveThis study aimed to develop a prediction model for depression risk within the first month of cancer treatment. MethodsWe included 16,159 patients diagnosed with cancer starting chemo- or radiotherapy treatment between 2008 and 2021. Machine learning models (eg, least absolute shrinkage and selection operator [LASSO] logistic regression) and natural language processing models (Bidirectional Encoder Representations from Transformers [BERT]) were used to develop multimodal prediction models using both electronic health record data and unstructured text (patient emails and clinician notes). Model performance was assessed in an independent test set (n=5387, 33%) using area under the receiver operating characteristic curve (AUROC), calibration curves, and decision curve analysis to assess initial clinical impact use. ResultsAmong 16,159 patients, 437 (2.7%) received a depression diagnosis within the first month of treatment. The LASSO logistic regression models based on the structured data (AUROC 0.74, 95% CI 0.71-0.78) and structured data with email classification scores (AUROC 0.74, 95% CI 0.71-0.78) had the best discriminative performance. The BERT models based on clinician notes and structured data with email classification scores had AUROCs around 0.71. The logistic regression model based on email classification scores alone performed poorly (AUROC 0.54, 95% CI 0.52-0.56), and the model based solely on clinician notes had the worst performance (AUROC 0.50, 95% CI 0.49-0.52). Calibration was good for the logistic regression models, whereas the BERT models produced overly extreme risk estimates even after recalibration. There was a small range of decision thresholds for which the best-performing model showed promising clinical effectiveness use. The risks were underestimated for female and Black patients. ConclusionsThe results demonstrated the potential and limitations of machine learning and multimodal models for predicting depression risk in patients with cancer. Future research is needed to further validate these models, refine the outcome label and predictors related to mental health, and address biases across subgroups

    Perspectives on validation of clinical predictive algorithms

    No full text
    The generalizability of predictive algorithms is of key relevance to application in clinical practice. We provide an overview of three types of generalizability, based on existing literature: temporal, geographical, and domain generalizability. These generalizability types are linked to their associated goals, methodology, and stakeholders

    Evaluation of the performance of algorithms mapping EORTC QLQ-C30 onto the EQ-5D index in a metastatic colorectal cancer cost-effectiveness model

    No full text
    Background: Cost-effectiveness models require quality of life utilities calculated from generic preference-based questionnaires, such as EQ-5D. We evaluated the performance of available algorithms for QLQ-C30 conversion into EQ-5D-3L based utilities in a metastatic colorectal cancer (mCRC) patient population and subsequently developed a mCRC specific algorithm. Influence of mapping on cost-effectiveness was evaluated. Methods: Three available algorithms were compared with observed utilities from the CAIRO3 study. Six models were developed using 5-fold cross-validation: predicting EQ-5D-3L tariffs from QLQ-C30 functional scale scores, continuous QLQ-C30 scores or dummy levels with a random effects model (RE), a most likely probability method on EQ-5D-3L functional scale scores, a beta regression model on QLQ-C30 functional scale scores and a separate equations subgroup approach on QLQ-C30 functional scale scores. Performance was assessed, and algorithms were tested on incomplete QLQ-C30 questionnaires. Influence of utility mapping on incremental cost/QALY gained (ICER) was evaluated in an existing Dutch mCRC cost-effectiveness model. Results: The available algorithms yielded mean utilities of 1: 0.87 ± sd:0.14,2: 0.81 ± 0.15 (both Dutch tariff) and 3: 0.81 ± sd:0.19. Algorithm 1 and 3 were significantly different from the mean observed utility (0.83 ± 0.17 with Dutch tariff, 0.80 ± 0.20 with U.K. tariff). All new models yielded predicted utilities drawing close to observed utilities; differences were not statistically significant. The existing algorithms resulted in an ICER difference of €10,140 less and €1765 more compared to the observed EQ-5D-3L based ICER (€168,048). The preferred newly developed algorithm was €5094 higher than the observed EQ-5D-3L based ICER. Disparity was explained by minimal diffences in incremental QALYs between models. Conclusion: Available mapping algorithms sufficiently accurately predict utilities. With the commonly used statistical methods, we did not succeed in developping an improved mapping algorithm. Importantly, cost-effectiveness outcomes in this study were comparable to the original model outcomes between different mapping algorithms. Therefore, mapping can be an adequate solution for cost-effectiveness studies using either a previously designed and validated algorithm or an algorithm developed in this study

    Evaluation of the performance of algorithms mapping EORTC QLQ-C30 onto the EQ-5D index in a metastatic colorectal cancer cost-effectiveness model

    Get PDF
    Background: Cost-effectiveness models require quality of life utilities calculated from generic preference-based questionnaires, such as EQ-5D. We evaluated the performance of available algorithms for QLQ-C30 conversion into EQ-5D-3L based utilities in a metastatic colorectal cancer (mCRC) patient population and subsequently developed a mCRC specific algorithm. Influence of mapping on cost-effectiveness was evaluated. Methods: Three available algorithms were compared with observed utilities from the CAIRO3 study. Six models were developed using 5-fold cross-validation: predicting EQ-5D-3L tariffs from QLQ-C30 functional scale scores, continuous QLQ-C30 scores or dummy levels with a random effects model (RE), a most likely probability method on EQ-5D-3L functional scale scores, a beta regression model on QLQ-C30 functional scale scores and a separate equations subgroup approach on QLQ-C30 functional scale scores. Performance was assessed, and algorithms were tested on incomplete QLQ-C30 questionnaires. Influence of utility mapping on incremental cost/QALY gained (ICER) was evaluated in an existing Dutch mCRC cost-effectiveness model. Results: The available algorithms yielded mean utilities of 1: 0.87 ± sd:0.14,2: 0.81 ± 0.15 (both Dutch tariff) and 3: 0.81 ± sd:0.19. Algorithm 1 and 3 were significantly different from the mean observed utility (0.83 ± 0.17 with Dutch tariff, 0.80 ± 0.20 with U.K. tariff). All new models yielded predicted utilities drawing close to observed utilities; differences were not statistically significant. The existing algorithms resulted in an ICER difference of €10,140 less and €1765 more compared to the observed EQ-5D-3L based ICER (€168,048). The preferred newly developed algorithm was €5094 higher than the observed EQ-5D-3L based ICER. Disparity was explained by minimal diffences in incremental QALYs between models. Conclusion: Available mapping algorithms sufficiently accurately predict utilities. With the commonly used statistical methods, we did not succeed in developping an improved mapping algorithm. Importantly, cost-effectiveness outcomes in this study were comparable to the original model outcomes between different mapping algorithms. Therefore, mapping can be an adequate solution for cost-effectiveness studies using either a previously designed and validated algorithm or an algorithm developed in this study

    Intensive Care Unit Physicians’ Perspectives on Artificial Intelligence–Based Clinical Decision Support Tools: Preimplementation Survey Study

    No full text
    Background: Artificial intelligence–based clinical decision support (AI-CDS) tools have great potential to benefit intensive care unit (ICU) patients and physicians. There is a gap between the development and implementation of these tools. Objective: We aimed to investigate physicians’ perspectives and their current decision-making behavior before implementing a discharge AI-CDS tool for predicting readmission and mortality risk after ICU discharge. Methods: We conducted a survey of physicians involved in decision-making on discharge of patients at two Dutch academic ICUs between July and November 2021. Questions were divided into four domains: (1) physicians’ current decision-making behavior with respect to discharging ICU patients, (2) perspectives on the use of AI-CDS tools in general, (3) willingness to incorporate a discharge AI-CDS tool into daily clinical practice, and (4) preferences for using a discharge AI-CDS tool in daily workflows. Results: Most of the 64 respondents (of 93 contacted, 69%) were familiar with AI (62/64, 97%) and had positive expectations of AI, with 55 of 64 (86%) believing that AI could support them in their work as a physician. The respondents disagreed on whether the decision to discharge a patient was complex (23/64, 36% agreed and 22/64, 34% disagreed); nonetheless, most (59/64, 92%) agreed that a discharge AI-CDS tool could be of value. Significant differences were observed between physicians from the 2 academic sites, which may be related to different levels of involvement in the development of the discharge AI-CDS tool. Conclusions: ICU physicians showed a favorable attitude toward the integration of AI-CDS tools into the ICU setting in general, and in particular toward a tool to predict a patient’s risk of readmission and mortality within 7 days after discharge. The findings of this questionnaire will be used to improve the implementation process and training of end users

    Intensive Care Unit Physicians’ Perspectives on Artificial Intelligence–Based Clinical Decision Support Tools: Preimplementation Survey Study

    No full text
    Background: Artificial intelligence–based clinical decision support (AI-CDS) tools have great potential to benefit intensive care unit (ICU) patients and physicians. There is a gap between the development and implementation of these tools. Objective: We aimed to investigate physicians’ perspectives and their current decision-making behavior before implementing a discharge AI-CDS tool for predicting readmission and mortality risk after ICU discharge. Methods: We conducted a survey of physicians involved in decision-making on discharge of patients at two Dutch academic ICUs between July and November 2021. Questions were divided into four domains: (1) physicians’ current decision-making behavior with respect to discharging ICU patients, (2) perspectives on the use of AI-CDS tools in general, (3) willingness to incorporate a discharge AI-CDS tool into daily clinical practice, and (4) preferences for using a discharge AI-CDS tool in daily workflows. Results: Most of the 64 respondents (of 93 contacted, 69%) were familiar with AI (62/64, 97%) and had positive expectations of AI, with 55 of 64 (86%) believing that AI could support them in their work as a physician. The respondents disagreed on whether the decision to discharge a patient was complex (23/64, 36% agreed and 22/64, 34% disagreed); nonetheless, most (59/64, 92%) agreed that a discharge AI-CDS tool could be of value. Significant differences were observed between physicians from the 2 academic sites, which may be related to different levels of involvement in the development of the discharge AI-CDS tool. Conclusions: ICU physicians showed a favorable attitude toward the integration of AI-CDS tools into the ICU setting in general, and in particular toward a tool to predict a patient’s risk of readmission and mortality within 7 days after discharge. The findings of this questionnaire will be used to improve the implementation process and training of end users
    corecore