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Abstract

Background: Cost-effectiveness models require quality of life utilities calculated from generic preference-based
questionnaires, such as EQ-5D. We evaluated the performance of available algorithms for QLQ-C30 conversion into
EQ-5D-3L based utilities in a metastatic colorectal cancer (mCRC) patient population and subsequently developed a
mCRC specific algorithm. Influence of mapping on cost-effectiveness was evaluated.

Methods: Three available algorithms were compared with observed utilities from the CAIRO3 study. Six models
were developed using 5-fold cross-validation: predicting EQ-5D-3L tariffs from QLQ-C30 functional scale scores,
continuous QLQ-C30 scores or dummy levels with a random effects model (RE), a most likely probability method
on EQ-5D-3L functional scale scores, a beta regression model on QLQ-C30 functional scale scores and a separate
equations subgroup approach on QLQ-C30 functional scale scores. Performance was assessed, and algorithms were
tested on incomplete QLQ-C30 questionnaires. Influence of utility mapping on incremental cost/QALY gained (ICER)
was evaluated in an existing Dutch mCRC cost-effectiveness model.

Results: The available algorithms yielded mean utilities of 1: 0.87 + 5d:0.14,2: 0.81 + 0.15 (both Dutch tariff) and 3:
0.81 +5d:0.19. Algorithm 1 and 3 were significantly different from the mean observed utility (0.83 +0.17 with Dutch
tariff, 0.80 + 0.20 with UK. tariff). All new models yielded predicted utilities drawing close to observed utilities;
differences were not statistically significant. The existing algorithms resulted in an ICER difference of €10,140 less
and €1765 more compared to the observed EQ-5D-3L based ICER (€168,048). The preferred newly developed
algorithm was €5094 higher than the observed EQ-5D-3L based ICER. Disparity was explained by minimal diffences
in incremental QALYs between models.
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Conclusion: Available mapping algorithms sufficiently accurately predict utilities. With the commonly used
statistical methods, we did not succeed in developping an improved mapping algorithm. Importantly, cost-
effectiveness outcomes in this study were comparable to the original model outcomes between different mapping
algorithms. Therefore, mapping can be an adequate solution for cost-effectiveness studies using either a previously
designed and validated algorithm or an algorithm developed in this study.
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Background

Measurement of health-related quality of life (HRQoL)
with generic questionnaires (e.g. EQ-5D-3L) and disease
specific questionnaires (e.g. EORTC QLQ-C30) are of
great interest to clinicians and researchers, especially in
the context of cost-effectiveness research. In oncology,
cost-effectiveness research becomes more important rap-
idly, as it provides information for decision-makers in
establishing the content of the basic benefit package of a
health insurance in some countries. Cost-effectiveness
outcomes are more often reported in addition to clinical
outcome parameters, and the incremental cost per qual-
ity adjusted life year (QALY) is generally chosen as pri-
mary outcome in cost-effectiveness models [1]. To
calculate the total QALYs gained due to treatment, both
length and quality of life have to be established. Quality
of life can be measured through a generic preference-
based quality of life questionnaire such as the commonly
used EQ-5D-3L questionnaire, which is requested by
some reimbursement authorities [2]. Based on this ques-
tionnaire, patient scores are transformed into health-
related quality of life utilities, on a scale of 1 - being full
health- to O - reflecting death (and even negative values
reflecting health states worse than death), which can be
combined with the duration (survival) of a patient to cal-
culate the QALY [1, 3].

In industry sponsored oncology studies, both the
EORTC QLQ-C30 and the EQ-5D questionnaires are
often used to capture clinically meaningful changes in
quality of life and enable health-economic evaluations
[2, 4]. However, the lack of generic preference-based
questionnaires in for instance academic clinical studies
or clinical registries hamper the calculation of health-
related quality of life utilities for cost-effectiveness re-
search. To overcome this issue, researchers often revert
to the translation of disease specific quality of life out-
comes (such as those captured by QLQ-C30 in oncol-
ogy) into utilities (such as captured by EQ-5D-3L) using
so called ‘mapping algorithms’ for their cost-
effectiveness models. Mapping algorithms are regression
models developed and tested in specific patient popula-
tion datasets, which make them ‘sample dependent’.
Consequently, Doble et al. [5] demonstrated that in on-
cology only two out of 10 eligible mapping algorithms,

performed sufficiently well in the estimation of utilities
(Versteegh et al. using a Dutch tariff for EQ-5D-3L, de-
veloped in a multiple myeloma and non-Hodgkin
lymphoma dataset, and Longworth et al. for EQ-5D-3L,
developed in a multiple myeloma and breast cancer
dataset) [5-7]. As shown by Doble et al, QLQ-C30 out-
comes between development and validation datasets
demonstrated clinically relevant differences on multiple
QLQ-C30 dimensions, although congruence of QLQ-
C30 outcomes between datasets was not predictive for
mapping algorithm performance [5]. Even so, disease re-
lated effects could influence the outcomes of mapping
algorithms and it has been previously advised to use a
mapping algorithm with similar clinical characteristics
compared to the sample on which the mapping is to be
applied [8]. More recently, Marriott et al. proposed a
mapping algorithm developed with a metastatic colorec-
tal cancer (mCRC) patient dataset using an UK. tariff
for EQ-5D-3L [9]. Even so, we question whether the cur-
rently available mapping algorithms, which were not all
developed with mCRC datasets and an mCRC disease
specific algorithm based on a U.K. tariff, are sufficiently
suitable to translate QLQ-C30 outcomes to Dutch EQ-
5D-3L based utilities for mCRC patients.

Our first objective was to evaluate the accuracy of avail-
able mapping algorithms for conversion of QLQ-C30 out-
comes to EQ-5D-3L utilities in a population of mCRC
patients. Our second objective was to design an mCRC
specific mapping algorithm using a Dutch tariff for the
conversion of QLQ-C30 outcomes to EQ-5D-3L based
utilities. Finally, we evaluated the influence of utility map-
ping on the incremental cost per QALY gained (ICER) in
an existing mCRC cost-effectiveness model [10].

Methods

Patient population

The CAIRO3 study is a randomized phase 3 study
(NCT00442637) sponsored by the Dutch Colorectal
Cancer Group (DCCG), in which mCRC patients with
stable disease or better (1 =558) following 6 cycles of
initial therapy with capecitabine, oxaliplatin and bevaci-
zumab (CAPOX-B). Patients were either randomized to
the observation strategy or capecitabine (625 mg/m?* or-
ally twice daily continuously) and bevacizumab (7.5 mg/



Franken et al. Health and Quality of Life Outcomes (2020) 18:240

kg intravenously every 3 weeks) (CB) maintenance treat-
ment [11]. Patients completed both the disease specific
QLQ-C30 version 3.0 and generic EQ-5D-3L question-
naires every 9 weeks simultaneously [2, 4]. Only patients
participating in the completion of QLQ-C30 and EQ-5D
questionnaires were selected and all time points were
pooled for this study. Descriptive statistics were used for
baseline characteristics.

Questionnaires

The EORTC QLQ-C30 questionnaire version 3.0 com-
prises 30 questions evaluating quality of life in five func-
tional scales (physical, role, cognitive, emotional and
social functioning), three symptom scales (fatigue, pain,
nausea and vomiting), global health status and single
items for the assessment of symptoms commonly re-
ported by cancer patients (dyspnea, appetite loss, insom-
nia, constipation, diarrhea and financial difficulties) [4].
QLQ-C30 outcomes were calculated using the EORTC
QLQ-C30 scoring manual. After linear transformation
and calculation of raw score for the questions ranging
not at all (0) to very much (4) for functional and symp-
tom scale scores and very poor (0) to excellent (7) for
global health, scale scores range 0 to 100. For functional
scales and global health, a high score represents a higher
level of functioning, while for the symptoms scales a low
outcome represents less symptomatology [12].

The EQ-5D-3L contains 5 questions each addressing a
different domain: mobility, self-care, usual activities,
pain/discomfort and anxiety/depression. Each of these
domains has 3 levels [2]. An EQ-5D-3L based utility is
derived from an EQ-5D questionnaire using a country
specific value set, i.e. tariff. EQ-5D-3L outcomes in this
study were transformed to Dutch and U.K. tariff EQ-5D-
3L -based utilities [13, 14].

Evaluation of existing algorithms

The algorithms by Versteegh et al. and Longworth et al.
were initially selected as these performed best in the
analysis by Doble and Lorgelly, and is appropriate to the
Dutch setting as both can predict Dutch tariff EQ-5D-3L
utilities [5, 6]. The mapping algorithm by Marriott et al.
was additionally selected as this algorithm was developed
in an mCRC patient dataset appropriate to a UK. setting
[8]. All three mapping algorithms were used for predic-
tion of an EQ-5D-3L based utility using concurrently
collected EORTC QLQ-C30 outcomes. As the algorithm
by Versteegh et al. was based on version 2 of the QLQ-
C30 questionnaire, while version 3 was used in the
CAIROS3 trial, QLQ-C30 question 1 through 5 were con-
verted into a binary response to fit the mapping algo-
rithm. All algorithms were developed for non-patient
level modelling purposes and the performance analysis is
therefore focused on their sample means. Some
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individual level performance characteristics were also
used for the mapping algorithms, albeit the well docu-
mented suboptimal performance of these algorithms on
the individual level in the lower utility ranges. The algo-
rithms were compared to the observed EQ-5D-3L based
utilities using the root mean square error (RMSE), mean
absolute error (MAE), t-test and Spearman correlation.
The data was formatted in STATA. All analyses were
performed using R.

Mapping algorithm design

Methodology according to the MAPS statement was
used for developing the mapping algorithm [15]. The
mCRC specific mapping algorithms that were developed
with commonly used statistical methods and evaluated
used 5-fold cross-validation.

Each fold provided a test set in which the trained
model, which was developed based on the other 4 folds,
could be tested, resulting in 5 estimates for each per-
formance measure.

First, the EQ-5D-3L based utility was regressed on the
QLQ-C30 functional and symptom scale scores using a
random effects model (RE) with a random intercept:
model 1. In a second RE model (model 2), the QLQ-C30
questions were treated as continuous variables and in a
third model as dummy variables (model 3). Dummy vari-
ables essentially are a redefinition of the four QLQ-C30
answer categories (categories: 1 (no problem at all) to 4
(very much a problem)) and seven categories (categories:
1 (very poor) to 7 (excellent)) for the last two QLQ-C30
questions. For each QLQ-C30 question dummies for
outcome categories were regressed on utility prediction.
All abovementioned RE models assume a continuous
and normal distribution for EQ-5D utilities. Although
this assumption is hardly realistic considering the well-
studied skewed distribution of utilities, it is by far the
most popular form of mapping in the literature and gen-
erally performs quite well compared to more complex
models [16].

Model 4 is a two-step model, also known as a response
mapping model. The advantage of a response mapping
model is that it is independent of tariff calculations and
it can therefore compute any country utility score for
which tariffs are available. First, in model 4, ordered logit
regression was used to predict the EQ-5D-3L domain
score. An ordered logit model was chosen to preserve
the ordering of the categories in the dependent variable.*
For this method, input variables were the QLQ-C30
functional scale scores. Secondly, a utility was calculated
using the most likely probability method. With the most
likely probability method, the probabilities of the EQ-
5D-3L response levels (no problem, some problems and
severe problems) per EQ-5D domain (mobility, self-care,
usual activities, pain/discomfort and anxiety/depression)
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were predicted based on the QLQ-C30 functional scale
scores. The following formulas were used for this:

1

Probl,,.;, 1 eEQD

Footnote * A multinomial logit model was also devel-
oped; however the ordered logit model outperformed
the multinomial logit model. Hence, we only report on
the ordered logit model in this manuscript.

1 1
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Where level stands for the EQ-5D-3L response level,
EQ. 5D stands for the latent EQ-5D functional or symp-
tom scale score regressed on the QLQ dimensions, x
stands for the estimated threshold between different re-
sponse levels. These predicted probabilities were subse-
quently scored with the EQ-5D scoring system [17].

Model 5 used beta regression to restrict the EQ-5D-3L
utilities to the 0,1 interval. The advantage of this method
is that it cannot lead to unrealistic utility predictions ex-
ceeding 1. However, it will not be able to produce nega-
tive utilities. In the current analyses, the number of
individuals with negative utilities was so small (0.2%)
that this is unlikely to notably affect the results. More-
over, it cannot model values of exactly 1 or 0, so these
values were rescaled prior to the mapping. All utilities
were first transformed to disutilities. All values =1
(which were utilities of 0 or less than 0) were selected to
be approximated so that the disutilities would return a
value <1 and thus included in the beta regression. To
do so, a standardized value was subtracted from the dis-
utility. All values of exactly 0 (which were utilities of 1)
were selected to be adapted so that the disutilities would
return values >0. The standardized transformation ap-
plied was: (disutility*(N-1) + 0.5)/N. Nevertheless, the
beta distribution is in theory a better approximation of
the EQ-5D utility distribution compared to the normal
distribution underlying OLS regression, at least in sam-
ples with very few health state observations worse than
dead. This regression was also conducted on the QLQ-
C30 functional scale scores.

The final model (model 6) consisted of a separate
equations subgroup approach. In the first step, probabil-
ities are calculated on the basis of a multinomial logistic
regression for having a EQ-5D-3L utility score lower
than 0.6 (related to scoring ‘extreme problems’ on any
EQ-5D-3L dimension [18], higher than 0.6 but lower
than 1 and equal to 1. In the next step, RE models are
trained on individuals with utility scores lower than 0.6
and higher than 0.6 separately. Finally, the predicted
utilities of these two sub-models and of having a 1 are
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combined with the probabilities from the first step. The
advantage of this approach is that it relaxes the assump-
tion of a continuous linear relation between EQ-5D util-
ities and QLQ-C30 functional and symptom scale
scores. Poor health states often adhere to a different (ap-
proximate) linear relation with the EQ-5D utilities com-
pared to higher scores, often leading to the overvaluing
of low health states in the literature [18].

All models were developed using a backward selection
procedure, where non-significant coefficients based on
the QLQ-C30 items were removed one-by-one (cut-off
value p = 0.05) until all coefficients were at or below the
cut-off value. Except for model 4 and 6 (in part), back-
ward selection was performed to minimize the mapping
algorithm length without compromising the model per-
formance, which has previously been done by others [6,
7]. In a second step, non-logical coefficients were re-
moved. Non-logical coefficients were defined as coeffi-
cients that carried an incongruous sign, for example a
coefficient for nausea leading to a better utility when
one would expect a reduction in the assigned utility.
Random effects with cluster robust standard errors were
introduced to correct for multiple responses from one
patient for all OLS models (models 1, 2, 3, and 6 in
part). The beta, ordered logit and multinomial logit re-
gressions (models 4, 5 and 6 in part) used normal stand-
ard errors as there were no cluster robust standard
errors available for these methods.

Validation of the developed mapping algorithms
After development of the six mapping algorithms using
each of the five training data sets consecutively, the algo-
rithms were tested in the corresponding folds. Perform-
ance of the algorithms was reported as mean predicted
utility, the root mean squared error (RMSE) and mean
absolute error (MAE). The RMSE will give a better
insight into the performance of the mapping algorithm
alongside MAE, as it is more sensitive to outliers and
hence helps identify the mapping algorithm with the
least extreme deviations between predicted and observed
values. The resulting algorithms were analyzed for lo-
gical consistency using scatter plots comparing observed
and predicted utilities, i.e. worse outcomes of the ob-
served EQ-5D-3L based utility also lead to worse out-
comes in the predicted utilities with the six methods
described above. Lastly, Spearman correlation coeffi-
cients and t-tests were used to illustrate the performance
of the various algorithms. The model of preference was
selected based on best fit: smallest value for RMSE,
MAE and highest value for the Spearman correlation.
Performance of the mapping algorithms based on
QLQ-C30 functional scale scores, developed with OLS,
response mapping, beta regression and the separate
equations model, were tested on incomplete QLQ-C30
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questionnaires. Quality of life functional scale scores
(e.g. physical functioning) can be calculated with a min-
imal completion of half of the questions included in the
QLQ-C30 questionnaires [12]. Incomplete question-
naires, for which functional scale scores calculations
remained possible and with a concurrently collected EQ-
5D-3L, were selected to test mapping algorithm per-
formance with those algorithms based on functional
scale scores. No imputations were performed on QLQ-
C30 questionnaires. Results were compared with concur-
rently collected EQ-5D-3L questionnaires. Outcomes
were compared with observed utilities as previously
described.

Algorithm influence on cost-effectiveness model
outcomes
The influence of the mapping algorithms on the primary
outcome, the incremental cost per QALY gained (ICER),
was evaluated using a Dutch cost-effectiveness model
comparing CB maintenance and observation following 6
cycles of first line CAPOX-B for patients with mCRC.
For this purpose, a discrete event simulation model, de-
veloped in AnyLogic (multi-method simulation software,
v.8.2.3, The AnyLogic Company (Chicago, IL, USA) was
used for the current analysis [19]. ICERs comparing CB
maintenance and observation were calculated for 1) ob-
served EQ-5D-3L based utilities as was done in the ori-
ginal study, 2) utilities obtained with the mapping
algorithm developed by Versteegh et al. [6] (mapping al-
gorithm for a Dutch tariff conversion), 3) utilities ob-
tained with the mapping algorithm developed by
Longworth et al. using a Dutch tariff and 4) utilities ob-
tained with the preferred mapping algorithm developed
in this study (model 1). The mapping algorithm devel-
oped by Marriott et al. [9] uses a UK. tariff conversion
and was therefore not included. Only concurrently col-
lected EQ-5D and QLQ-C30 observations during either
maintenance treatment and observation, defined as the
first health-state, were used in this analysis. Utilities in
subsequent health-states (re-introduction of therapy, sal-
vage therapy, death) were derived from literature as
these could not be derived from the CAIRO3 study [10].
A total of 10,000 hypothetical patients per treatment
strategy were simulated for a patient-level outcome cal-
culation. Subsequently, a probabilistic analysis was per-
formed to calculate the ICERs with a 95% confidence
interval based on 10,000 samples. To reflect parameter
uncertainty in the probabilistic analysis, distributions for
the utilities were defined according to the method of
moments using the mean and a standard error for each
of the utilities derived from the selected mapping algo-
rithms in line with the original cost-effectiveness evalu-
ation of the CAIRO3 study. With the exception of the
uncertainty around utilities only, distributions for the
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other parameters, such as costs, health-state transitions,
were defined as in the original cost-effectiveness evalu-
ation of the CAIRO3 study [10].

Results

From a total of 2440 observations, 1905 concurrently
collected, complete QLQ-C30 and EQ-5D-3L question-
naires were included in this analysis. The concurrent ob-
servations were obtained from 473 patients enrolled in
the CAIRO3 study (238 patients in the observation arm
and 235 patients in the maintenance treatment arm). In
Table 1, characteristics of the QLQ-C30 and EQ-5D data
set are presented. The distribution of EQ-5D based util-
ities can be viewed in Additional File 1. Incomplete
QLQ-C30 or EQ-5D-3L questionnaires were excluded
for mapping algorithm development. For the purpose of
the mCRC specific mapping algorithm design, we ran-
domly divided the data in 5 folds (n = 381 each).

Performance of existing mapping algorithms on an mCRC
dataset

The mean observed utility based on completed EQ-5D-
3L questionnaires of the mCRC dataset included in this
analysis was 0.834 + sd: 0.171 (Dutch tariff) and 0.803 +
sd: 0.197 (UK. tariff). The algorithm by Versteegh et al.
resulted in a mean utility of 0.866 + 0.135 with a Spear-
man correlation of 0.76 (p <0.01) (Table 2). The algo-
rithm by Longworth et al. resulted in a mean utility of
0.835+ 0.127 and 0.810 + 0.152, with a Spearman correl-
ation of 0.77 and 0.79, for the Dutch tariff and the UK.
tariff respectively. The algorithm by Longworth for
Dutch tariff performed very well and was not signifi-
cantly different compared to observed utilities (p =
0.687). The algorithm by Marriott et al. (U.K. tariff) re-
sulted in a mean utility of 0.813 + sd:0.185 with a Spear-
man correlation of 0.75 (p < 0.01) (Table 2).

Design and validation of a new mapping algorithm on a
mCRC dataset
Algorithm coefficients for the RE based algorithms are
presented in Tables 3 (model 1), 4 (model 2) and 5
(model 3). These algorithms concern the RE model with
QLQ-C30 functional scale scores (model 1), RE model
with QLQ-C30 question outcomes as continuous vari-
able (model 2) and RE model with the QLQ-C30 ques-
tions as dummy variables (model 3). The ordered logit
regressions for prediction of the EQ-5D-3L based utility
(model 4) can be viewed in the Additional file 2: Tables
1-3. The beta regression (model 5) output can be found
in Table 6 and the separate equations subgroup ap-
proach model (model 6) in Additional file 2 Tables 4-6.
Observed and mean predicted utility resulting from
the six developed mapping algorithms are presented in
Table 7. The mean observed utility was 0.834 +0.171,



Franken et al. Health and Quality of Life Outcomes (2020) 18:240 Page 6 of 13
Table 1 Patient characteristics for concurently collected EQ-5D and QLQ-C30 questionnaires
Complete
N=1905

Age (years) 64 (84)

Male gender (%) 69

EQ-5D-3L° N 1905
Mobility 1/2/3 (%) 57.9/41.8/0.3
Self-cae 1/2/3 (%) 93.4/6.1/04
Usual activities 1/2/3 (%) 57.5/385/39
Pain/discomfort 1/2/3 (%) 60.2/384/14
Depression/anxiety 1/2/3 (%) 77.2/21.8/1
EQ-5D utility, mean (SD) 0.834 (0.171)
EQ-5D range -0.134t01

QLQ-C30v.30 Questionnaires, N 1905
Physical functioning, mean (SD) 82.681 (17.195)
Role functioning, mean (SD) 76.947 (24.218)
Emotional functioning, mean (SD) 85.744 (15.829)
Cognitive functioning, mean (SD) 89.221 (15.294)
Social functioning, mean (SD) 86.177 (18.718)
Global health, mean (SD) 74711 (17.464)

( )

Fatigue, mean (SD)
Nausea/vomiting, mean (SD)
Pain, mean (SD)

Dyspnea, mean (SD)
Insomnia, mean (SD)
Appetite, mean (SD)
Constipation, mean (SD)
Diarrhea, mean (SD)

Financial difficulties, mean (SD)

Concurent EQ-5D and incomplete QLQ-C30 with retainment of functional scale scores, NP

24.205 (20.059
4.234 (11.286)

13.508 (20.705)
10.866 (19.061)
15.083 (22.297)
9.729 (19.651)

6.824 (15917)

10.569 (19.363)
6.229 (15.978)

120

Percentages at level 1, 2 and 3 represent no problems at all, some problems and extreme problems, respectively
BPatient characteristics for concurently collected incomplete QLQ-C30 questinnaires available in Additional file 3

while the mean predicted utilities for model 1 to 6 were
nearly identical, 0.832+0.134, 0.832+0.134, 0.833
0.133, 0.830 + 0.145, 0.838 + 0.156 and 0.834 + 0.138, re-
spectively. A utility prediction drawing close to the ob-
served utility was achieved in all models. Differences
between observed and predicted utilities were non-

significant. The lowest RMSE and MAE was achieved by
model 1 (RMSE 0.098, MAE 0.072) and model 4 (RMSE
0.098, MAE 0.072). Note that comparable to the Long-
worth algorithm, model 4 is an algorithm for EQ-5D re-
sponse prediction and is thus independent of country
tariff. For the purpose of comparison between model

Table 2 Utility, observed and predicted, for all patients with complete questionnaires (n = 1905)

Mean utility SD Min. Max. RMSE MAE Spearman correlation  p-value
Observed utility (Dutch tariff) 0.834 0171 -0.134 1 - - - -
Observed utility (UK. tariff) 0.803 0.197 -0.239 1 - - - -
Predicted utility (Versteegh (6)) 0.866 0.135 —-0.298 0978 0.113 0.080 0.76 <0.001*
Predicted utility (Longworth (7) (Dutch tariff) 0.835 0.127 -0.088 0.959 0.106 0.078 0.77 0.687*
Predicted utility (Longworth (7) (UK tariff) 0810 0.152 -0.307 0.955 0.114 0.085 0.79 0.026**
Predicted utility (Marriott (9)) 0813 0185  —-0.159 1.061 0.122 0089 075 0.001**

*p-value tested against Dutch tariff ** p-value tested against U.K. tariff; p-values result from a t-test
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Table 3 Regression results for model 1: EQ-5D-3L based utility values on QLQ-C30 domain scores

Variable Coefficient (SD) t-value p-value 95% Cl

Constant 0.2993 (0.027) 10.940 <0.001 [0.246, 0.353]
Physical functioning 0.0021 (0.000) 7.949 <0.001 [0.002, 0.003]
Role functioning 0.0011 (0.000) 5738 <0.001 [0.001, 0.001]
Emotional functioning 0.0025 (0.000) 10.901 <0.001 [0.002, 0.003]
Cognitive functioning 0.0005 (0.000) 2.279 0.023 [0.000, 0.001]
Social functioning 0.0006 (0.000) 2814 0.005 [0.000, 0.001]
Symptom scale: Pain —0.0023 (0.000) -13519 <0.001 [-0.003, —0.002]
Symptom scale: Insomnia —0.0005 (0.000) -3.166 0.002 [-0.001, 0.000]

Symptom scale nausea and vomiting was removed as non-logical coefficient
p-values result from a t-test

performance, a Dutch tariff was applied to the Long-
worth algorithm and model 4. Mapping algorithms
based on functional scale scores are more forgiving to-
wards incomplete questionnaires, as quality of life func-
tional scale scores (e.g. physical functioning) can be
calculated with a minimal completion of half of the
questions included in the QLQ-C30 questionnaires. Per-
formance of all newly developed mapping algorithms
using QLQ-C30 functional scale scores (model 1, 4, 5
and 6), were additionally tested in incomplete QLQ-C30
questionnaires for which functional scale scores could
still be calculated for which EQ-5D outcomes were
concurrently available (n=120). Patient characteristics
of incomplete questionnaires are presented in Add-
itional file 3. The mean observed utility in 120 incom-
plete QLQ-C30 questionnaires was 0.760 + 0232. The
best predicted mean utilities were 0.767 + 0.177, 0.756 +
0.222, 0.764 + 0.222, for model 1, model 4 and model 5
respectively (Table 8). The lowest RMSE an MAE were
achieved for model 1, which was chosen as preferred

Table 4 Regression results for model 2: EQ-5D-3L based utility
values QLQ-C30 questions as continuous variables

Variable Coefficient (SD) t-value p-value 95% Cl

Constant 1340 (0.015) 86.755 <0.001 (1310, 1.370]
QLQ3 —0.031 (0.006) —5.553 <0.001 [-0.042, —0.020]
QLQ5 —0.077 (0.011) —7.056 < 0.001 [~0.098, - 0.055]
QLQ6 —0.048 (0.005) —9.660 <0.001 [-0.057, - 0.038]
QLQ9 —0.053 (0.006) —9.305 <0.001 [-0.064, —0.042]
QLQ11 —0.018 (0.005) —3.686 <0.001 [-0.027, —0.008]
QLQ19 —0.021 (0.007) -3.150  0.002 [~0.033, - 0.008]
QLQ22 —0.021 (0.005) -4.126 <0.001 [-0.031,-0.011]
QLQ23 —0.025 (0.006) -4.010 <0.001 [-0.038,-0.013]
QLQ24 —0.040 (0.007) —6.113 <0.001 [-0.053, - 0.027]
QLQ26 —0.026 (0.006) —4.546 <0.001 [-0.037, -=0.015]
QLQ28 —0.012 (0.006) -1913 0.056 [-0.025, 0.000]

QLQ15 (vomiting) was removed as non-logical coefficient
p-values result from a t-test

model. The algorithm based on the QLQ-C30 functional
scale scores (preferred model) was regarded effective
based on correlation between observed and mapped util-
ities (Fig. 1).

Figures depicting the error of predicted utilities com-
pared to the observed utilities for each algorithm are
available in the Additional file 4: Figs. 2 and 3. As is well
documented in the literature [18], all mapping algo-
rithms show overestimation of lower utilities and under-
estimation of high utilities.

Algorithm influence on ICERs in a mCRC cost-
effectiveness model

The influence of the mapping algorithms on the ICER,
was tested in an existing Dutch cost-effectiveness model
comparing two different treatment strategies (CB main-
tenance versus observation following 6 cycles of first line
CAPOX-B) in an mCRC patient population. For the first
health state in this cost-effectiveness model, utilities
were estimated using a total of 1654 observations (709
observations for 223 patients in the observation arm and
945 observations for 225 patients in the maintenance
arm), utilities of subsequent health states (first progres-
sion and theirafter) were derived from literature as was
done in the original cost-effectiveness study. The ICERs
presented in Table 9 were obtained with 1) observed
EQ-5D-3L based utilities, 2) utilities obtained with the
mapping algorithm developed by Versteegh et al., 3) util-
ities obtained with the mapping algorithm developed by
Longworth et al using a Dutch tariff and 4) utilities ob-
tained with the preferred model 1. The calculated ICER
based on observed utilities in this analysis was €168,048/
QALY. Previously developped mapping algorithm by
Versteegh et al. compared to the observed EQ-5D-3L
based utility lead to a negative ICER difference in the
point estimate of €10,140 per QALY gained, while a
positive difference of €5094 and €1765 was shown for
the preferred algorithm (model 1) and the Longworth al-
gorithm, respectively (Fig. 2).
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Table 5 Regression results for model 3: EQ-5D-3L based utilities on QLQ-C30 questions as dummy variables

Variable Coefficient (SD) t-value p-value 95% Cl

Constant 0.966 (0.006) 158.046 < 0.001 [0.954, 0.978]
QLQ1_quite a bit —0.020 (0.009) -2.142 0.032 [-0.038, —0.002]
QLQ2_a little —0.014 (0.006) —2324 0.020 [-0.026, —0.002]
QLQ3_a little —0.028 (0.008) -3.670 < 0.001 [-0.043, —0.013]
QLQ3_quite a bit —0.046 (0.014) —3.231 0.001 [-0.074, —0.018]
QLQ5_ a little —0.065 (0.013) —4.903 <0.001 [-0.091, —0.039]
QLQ5_ quite a bit —0.225 (0.037) -6.097 < 0.001 [-0.297, = 0.153]
QLQ6_ a little —0.047 (0.007) -6978 <0.001 [-0.06, —0.034]
QLQ6_ quite a bit —-0.076 (0.011) —6.780 <0.001 [-0.098, —0.054]
QLQ6_ very much —0.259 (0.020) —-13.215 < 0.001 [-0.297, -0.22]
QLQ9_ a little —0.068 (0.007) -10.468 <0.001 [-0.081, —0.055]
QLQ9_quite a bit —0.099 (0.012) —8327 <0.001 [-0.123, = 0.076]
QLQ9_very much —-0.168 (0.023) —7.383 <0.001 [-0.213,-0.123]
QLQ18_very much —0.058 (0.020) —2933 0.003 [-0.097, —0.019]
QLQ19_quite a bit —0.062 (0.014) — 4475 <0.001 [-0.089, —0.035]
QLQ22_a little —0.027 (0.006) —4.251 < 0.001 [-0.039, —0.014]
QLQ22_quite a bit —0.046 (0.012) —-3733 < 0.001 [-0.07, -0.022]
QLQ23_quite a bit —0.060 (0.018) —329% 0.001 [-0.096, —0.024]
QLQ23_ very much —0.211 (0.049) -4.338 < 0.001 [-0.306, —0.115]
QLQ24_a little —0.045 (0.007) -6.117 < 0.001 [-0.059, —0.03]
QLQ24_quite a bit —0.108 (0.020) —5.264 <0.001 [-0.148, — 0.068]
QLQ24_very much —0.213 (0.035) -6.039 < 0.001 [-0.283, —0.144]
QLQ26_a little —0.033 (0.007) —4.874 < 0.001 [-0.047, —0.02]
QLQ26_quite a bit —0.068 (0.016) —4.385 < 0.001 [-0.099, —0.038]
QLQ28_ very much —0.056 (0.022) -2.603 0.009 [-0.098, —0.014]

p-values result from a t-test

Discussion

We have shown that the previously developed algorithm
by Versteegh et al. and Marriott et al. for conversion of
the disease-specific questionnaire EORTC QLQ-C30
into EQ-5D-3L based utilities resulted in a statistically
significant difference between predicted and observed

utilities. Still, the existing algorithms performed well as
the mean predicted utilities drew close to the mean ob-
served utilities (mean differences between the observed
and respectively the mapped utilities by Versteegh et al.,
Longworth et al. and Marriott et al. were 0.03, 0.001 and
0.01 for the Dutch tariff EQ-5D utilities). No significant

Table 6 Beta regression results for model 5: EQ-5D-3L based disutility values on QLQ-C30 domain scores

Variable Coefficient (SD) t-value p-value 95% Cl
Constant 2.081 (0.210) 9.898 <0.001 [1.669,2.493]
Global health —0.004 (0.002) -1.892 0.058 [-0.007,0]
Physical functioning —0.018 (0.002) -8.269 <0.001 [-0.022,-0.014]
Role functioning —0.010 (0.002) —6.125 <0.001 [-0.013,-0.007]
Emotional functioning —0.015 (0.002) —-8479 <0.001 [-0.019,-0.012]
Cognitive functioning —0.005 (0.002) -3.063 0.002 [-0.009,-0.002]
Symptom scale: pain 0.014 (0.001) 9.939 <0.001 [0.011,0017]
Symptom scale: insomnia 0.005 (0.001) 4119 <0.001 [0.002,0.007]
Symptom scale: financial 0.007 (0.001) 4448 <0.001 [0.004,0.009]

Symptom scale nausea and vomiting was removed as non-logical coefficient
p-values result from a t-test
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Table 7 Mean, standard deviation, minimum and maximum of utility values, RMSE and MAE for the predicted utilities (p-values

result from a t-test)

Observed utility NL Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
RE functional RE: continuous RE: dummy v Ordered Beta regression Separate
scale scores® ariables logit equations
Mean 0.834 0.832 0.832 0.833 0.830 0.838 0.834
St.Dev 0171 0.134 0.134 0.133 0.145 0.156 0.138
Min —0.134 0.069 —0.055 0.057 —0.206 0.034 0.178
Max 1 0.982 0.969 0.966 0975 0.959 0.990
RMSE - 0.098 0.098 0.103 0.098 0.106 0.100
MAE - 0.072 0.075 0.077 0.072 0.081 0.070
Spearman correlation - 0.781 0.780 0.779 0.786 0.774 0.787
p-value - 0.564 0.501 0615 0.125 0.108 0.943

Preferred model
p-values result from a t-test

difference between, observed and predicted utilities were
seen with the algorithm developed by Longworth et al.
Even though the predicted utilities calculated with the algo-
rithms by Versteegh et al. and Marriott et al. were signifi-
cantly different, the outcome differences were not
considered clinically meaningful. Previously, the minimal
clinically relevant difference in utility for cancer patients
was found to range 0.08-0.16, although this difference
might vary per patient population [20, 21]. Moreover, pa-
tients with different cancers types and stages of disease ex-
perience different symptoms and may thus respond
differently on the QLQ-C30 functional scale scores [8]. In
contrast, as was previously shown by Doble et al. disease se-
verity is more likely to drive EQ-5D estimation based on
QLQ-C30, and less by the cancer type [5]. Moreover, sev-
eral studies developed condition-specific instruments, such
as the EORTC QLU-C10D to derive health-related quality
of life utilities, which might be more sensitive to disease-
specific effects and in theory be preferred over EQ-5D.
However, one can question whether these condition-
specific instruments outperform EQ-5D [22-24]. Finally,

with the emergence of novel treatment strategies in cancer
treatment, such as immunotherapy, one could hypothesize
a different value of QLQ-C30 functional scale or symptom
scores, which could affect mapping outcomes.
Nevertheless, we pursued a better fitting algorithm for
the mCRC patient population. All developed models
demonstrated improved utility prediction ability with
non-significant differences between observed and pre-
dicted utilities, although we acknowledge that the per-
formance of the models developed in this study are not
tested in a truly external dataset (as the models taken
from the literature). Importantly, with the commonly
used statistical methods to develop mapping algorithm,
we did not succeed in the development of a better per-
forming mapping algorithm. In case a mapping algo-
rithm would be selected from our study, we would
suggest the use of the RE model based on QLQ-C30
functional scale scores (model 1). This model provided
the benefit of utility prediction for incomplete QLQ-C30
questionnaires (for which functional scale scores could
be calculated), while retaining a good performance if

Table 8 Mean, standard deviation, minimum and maximum of utility values, RMSE and MAE for the predicted utilities for
incomplete questionnaires (n = 120) with algorithms using domain scores for utility prediction (model 1, 4, 5 and 6)

Observed utility NL Model 1

RE functional scale scores*

Model 5
Beta regression

Model 6
Separate equations
subgroup approach

Model 4
Ordered logit

Mean 0.760 0.764
St.Dev 0.232 0.177
Min —0.086 0.108
Max 1 0.982
RMSE - 0.128
MAE - 0.085
Spearman correlation - 0.843
p-value - 0.734

0.756 0.764 0.767
0.222 0.222 0.178
-0.178 0.032 0.232
0.971 0.959 0.985
0.139 0.131 0.128
0.086 0.088 0.085
0.827 0.828 0.827
0.945 0.751 0.723

p-values result from a t-test
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Fig. 1 Correlation of observed versus predicted utility for model 1.
Observed utility values were based on the EQ-5D-3L questionnaire
and regressed on the QLQ-C30 functional and symptom scale scores

tested on incomplete QLQ-C30 questionnaires. QLQ-
C30 outcome conversion into EQ-5D-3L based util-
ities (Dutch tariff) could therefore be performed with
the following algorithm, developed on functional scale
scores (model 1):

EQ-5D ity = 0.2993 + 0.0021xphysical functioning score
+0.0011xrole functioning score
~+0.0025«emotional functioning score
+0.0005%cognitive functioning score
+0.0006%social functioningscore
+pain scorex-0.0023 + insomnia scorex-0.0005.

The main purpose of mapping algorithms is to convert
disease specific quality of life data into utilities for the
purpose of cost-effectiveness research, if utilities cannot
directly be derived from the dataset. We investigated the
influence of a mapping algorithm on a cost-effectiveness
model evaluating CB maintenance treatment compared
to observation in mCRC patients. We demonstrated that
the use of mappings results in comparable outcomes
when used in a cost-effectiveness model. The newly de-
veloped algorithm slightly underperformed compared to
the previously developed algorithm by Longworth et al.
(ICER differences between in CEA using observed util-
ities and mapping: €1765/QALY gained for the Long-
worth et al. mapping and €5094 /QALY gained for the
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preferred model 1 in this study). An ICER difference of
-€10,140/QALY gained was seen if compared to the Ver-
steegh et al. mapping. Disparities were explained by
small differences in incremental QALY estimation be-
tween treatment arms. The algorithm by Versteegh et al.
and Longworth et al. slightly overestimated the utilities
in both study arms; while the preferred model algorithm
(model 1) overestimated the utilities in the observation
arm and underestimated the utilities in the CB mainten-
ance arm. Nevertheless, the Longworth algorithm out-
performed our preferred model algorithm in this cost-
effectiveness model. In a model with more pronounced
utility differences, the impact of the chosen mapping al-
gorithm might be different due to case mix effects. The
good performance of the Longworth algorithm in this
study is remarkable, as this algorithm had not been de-
veloped on colon cancer patients, and was estimated on
an entirely different sample. Hence, its good perform-
ance, especially relative to the within-sample validation
of the algorithm we developed, shows the usefulness of
this flexible algorithm. Its performance raises the ques-
tion if similarity of symptoms and severity of symptoms
between the development sample and the application
sample might not be of greater importance than type of
cancer or tumor. While this study seems to suggest that
indeed tumor type is less relevant, such a statement
must be made with caution: many mapping algorithms,
including the one by Versteegh et al., use only a selec-
tion of items of the QLQ-C30. As a consequence, out of
sample prediction in patients with other cancer types
with specific symptoms not captured by the included
items might be complicated.

A strength of this study was the use of multiple statis-
tical methods which enabled us to evaluate and select
the best-performing algorithm, while also considering
convenience in use. Furthermore, the analyses were con-
ducted on a large population of patients, with a total of
1905 completed questionnaires. As previously men-
tioned, the algorithm by Versteegh et al. and the algo-
rithm by Longworth et al. were not developed or
validated in mCRC patient populations [6, 7]. Only, the
algorithm by Marriott et al. was developed and tested in
an mCRC patient population using a U.K. tariff for EQ-
5D-3L [9]. Patients with different cancers types and stages

Table 9 Effect of utility mapping on the incremental cost/QALY in a discrete event simulation model

Utility Utility Incremental costs (€)  Incremental QALYs  ICER (€/QALY) ICER difference
Observation CB Maintenance
EQ-5D-3L based utility 0.829 (SE 0.0080)  0.839 (SE 0.0055) 30,163 0.179 168,048
Versteegh utility (6) 0.876 (SE 0.0052)  0.875 (SE 0.0040) 30,163 0.191 157,908 - €10,140
Longworth (Dutch) utility(7) ~ 0.840 (SE 0.0052)  0.843 (SE 0.0038) 30,163 0.178 169,812 €1765
Model 1° 0.836 (SE 0.0053)  0.837 (SE 0.0041) 30,163 0.174 173,141 €5094

CB Capecitabine and bevacizumab
“based on the OLS domain scores
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Fig. 2 Incremental cost-effectiveness plans for observed and predicted utilities. Incremental cost-effectiveness planes comparing the effect of
using observed EQ-5D-3L utility, the mapping algorithm by Versteegh et al, the mapping algorithm by Longworth et al (based on Dutch tariff).
and predicted utility based on the preferred model (model 1 on OLS algorithm on QLQ-C30 functional scale scores). Ellipses represent the 95%

of disease experience different symptoms and might thus
respond differently on the QLQ-C30 domains functional
scale scores. Thus, the most applicable algorithm in terms
of cancer type and disease stage, should be applied for
utility prediction, although it has previously been shown
to be more dependent of disease severity than cancer type
[5]. Of note, another colorectal cancer specific mapping
algorithm estimating EQ-5D-5L values using a UK. tariff
was previously developed [25, 26]. However, this mapping
algorithm could not be tested and validated with the EQ-
5D-3L values in our dataset, as this would require an add-
itional mapping of EQ-5D-3L to EQ-5D-5L and we conse-
quently would not been able to separate performance of
the mapping algorithm due to differences in utilities. Cur-
rently, the EQ-5D-5L questionnaire is increasingly being
adopted in clinical trials as it is regarded more sensitive to
health effects and reduce ceiling effects [27]. Further re-
search on mapping of QLQ-C30 outcomes towards EQ-
5D-5L is therefore necessary.

The mapping algorithm was developed using a single
sample, in which completed questionnaires were
assigned to one of five folds that functioned as hold-out
sample, which may be regarded as limitation of this
study. Inevitably, the training and test datasets therefore
contain comparable patients, who completed the quality
of life questionnaires under similar circumstance. Prefer-
ably, validation of the developed algorithms should have
occurred in another sample containing mCRC patient
data on both the QLQ-C30 and the EQ-5D-3L question-
naires. Another limitation to this study, is the use of dif-
ferent time-points. The regression algorithms accounted
for the panel data structure where possible through the

use of random effects models. However, it has previously
been shown that colorectal cancer patients continue to
report high quality of life during the course of their dis-
ease [28—31]. Nonetheless, significant and clinically rele-
vant changes in quality of life occur in the palliative
stage of the disease, especially in the last few months of
life a decline in quality of life has been demonstrated
[32]. Therefore, it may be hypothesized that this could
also apply for different time-points within a trial during
which different dimensions of health are affected. The
models developed in this study, are especially sensitive
to this issue.

Conclusion

We have developed a QLQ-C30 to EQ-5D-3L mapping
algorithm on a mCRC patient population with predicted
utilities drawing close to the observed utilities. However,
the mapping algorithm did not outperform existing
mapping algorithms, especially compared with the re-
sponse mapping algorithm by Longworth et al. More-
over, external validation of our preferred mapping
algorithm remains desirable. The choice of mapping al-
gorithm might only have a small impact on the predicted
utility and cost-effectiveness, as was illustrated in the
case study. Nonetheless, for studies only including
disease-specific quality of life questionnaires, our results
show that mapping is an adequate solution to obtain
utility estimates for use in cost-effectiveness analysis for
mCRC patients, using either our newly developed map-
ping algorithm or one of the existing algorithms used in
this study.
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