469,953 research outputs found

    Componentwise and Cartesian decompositions of linear relations

    Full text link
    Let AA be a, not necessarily closed, linear relation in a Hilbert space \sH with a multivalued part \mul A. An operator BB in \sH with \ran B\perp\mul A^{**} is said to be an operator part of AA when A=B \hplus (\{0\}\times \mul A), where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of AA. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation AA is said to have a Cartesian decomposition if A=U+\I V, where UU and VV are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of AA and the real and imaginary parts of AA is investigated

    Determination of the dynamical structure of galaxies using optical spectra

    Full text link
    Galaxy spectra are a rich source of kinematical information since the shapes of the absorption lines reflect the movement of stars along the line-of-sight. We present a technique to directly build a dynamical model for a galaxy by fitting model spectra, calculated from a dynamical model, to the observed galaxy spectra. Using synthetic spectra from a known galaxy model we demonstrate that this technique indeed recovers the essential dynamical characteristics of the galaxy model. Moreover, the method allows a statistically meaningful error analysis on the resulting dynamical quantities.Comment: 14 pages, 14 figures, Latexfile, MNRAS, in pres

    Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas

    Get PDF
    The self-gravitating thermal gas (non-relativistic particles of mass m at temperature T) is exactly equivalent to a field theory with a single scalar field phi(x) and exponential self-interaction. We build up perturbation theory around a space dependent stationary point phi_0(r) in a finite size domain delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica- tions (interstellar medium,galaxy distributions).We compute the correlations of the gravitational potential (phi) and of the density and find that they scale; the latter scales as 1/r^2. A rich structure emerges in the two-point correl- tors from the phi fluctuations around phi_0(r). The n-point correlators are explicitly computed to the one-loop level.The relevant effective coupling turns out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE) for the n-point correlator are derived and the RG flow for the effective coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence on tau emerges here.lambda(tau) vanishes each time tau approaches discrete values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior [lambda(tau) decreasing with increasing tau] is here connected with low density self-similar fractal structures fitting one into another.For scales smaller than the points tau_n, ultraviolet unstable behaviour appears which we connect to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we get a hierarchy of scales and Jeans lengths following the geometric progression R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure

    Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes

    Get PDF
    The string propagation equations in axisymmetric spacetimes are exactly solved by quadratures for a planetoid Ansatz. This is a straight non-oscillating string, radially disposed, which rotates uniformly around the symmetry axis of the spacetime. In Schwarzschild black holes, the string stays outside the horizon pointing towards the origin. In de Sitter spacetime the planetoid rotates around its center. We quantize semiclassically these solutions and analyze the spin/(mass2^2) (Regge) relation for the planetoids, which turns out to be non-linear.Comment: Latex file, 14 pages, two figures in .ps files available from the author

    Effects of a mixed vector-scalar kink-like potential for spinless particles in two-dimensional spacetime

    Full text link
    The intrinsically relativistic problem of spinless particles subject to a general mixing of vector and scalar kink-like potentials (tanh,γx\sim \mathrm{tanh} ,\gamma x) is investigated. The problem is mapped into the exactly solvable Surm-Liouville problem with the Rosen-Morse potential and exact bounded solutions for particles and antiparticles are found. The behaviour of the spectrum is discussed in some detail. An apparent paradox concerning the uncertainty principle is solved by recurring to the concept of effective Compton wavelength.Comment: 13 pages, 4 figure
    corecore