The self-gravitating thermal gas (non-relativistic particles of mass m at
temperature T) is exactly equivalent to a field theory with a single scalar
field phi(x) and exponential self-interaction. We build up perturbation theory
around a space dependent stationary point phi_0(r) in a finite size domain
delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica-
tions (interstellar medium,galaxy distributions).We compute the correlations of
the gravitational potential (phi) and of the density and find that they scale;
the latter scales as 1/r^2. A rich structure emerges in the two-point correl-
tors from the phi fluctuations around phi_0(r). The n-point correlators are
explicitly computed to the one-loop level.The relevant effective coupling turns
out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE)
for the n-point correlator are derived and the RG flow for the effective
coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence
on tau emerges here.lambda(tau) vanishes each time tau approaches discrete
values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior
[lambda(tau) decreasing with increasing tau] is here connected with low density
self-similar fractal structures fitting one into another.For scales smaller
than the points tau_n, ultraviolet unstable behaviour appears which we connect
to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we
get a hierarchy of scales and Jeans lengths following the geometric progression
R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is
expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure