40 research outputs found

    Sources of DNA contamination and decontamination procedures in the forensic laboratory

    Get PDF
    The sensitivity of forensic DNA typing techniques can cause problems when evidence samples are inadvertently contaminated with DNA from another source. Therefore, precautions need to be taken to minimize the risk of contamination. In this study, laboratory air and surfaces, tools and equipment were evaluated as potential sources of contaminating DNA. Subsequently, two decontamination procedures, i.e. the conventionally used sodium hypochlorite and the commercially available DNA decontamination solution DNA ZAPTM (Applied Biosystems), were compared for their use in removing potentially contaminating DNA from the laboratory working environment. From our results, it can be concluded that air is unlikely to be the source of observed DNA contamination in the laboratory whereas DNA accumulating on surfaces, tools and equipment within the laboratory environment may potentially be transferred to evidence samples. DNA ZAPTM outperformed the conventionally used sodium hypochlorite decontamination procedure. Stringent preventive measures and decontamination of equipment and laboratory surfaces is important to avoid secondary transfer of this contaminating DNA to evidence samples

    CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point

    Get PDF
    Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK-activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21(cip1). In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage

    Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review

    Get PDF
    Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly

    No full text
    The response to stance perturbations changes with age. The shift from an ankle to a hip strategy with increasing perturbation magnitude occurs at lower accelerations in older than in young adults. This strategy shift has been related to age-related changes in muscle and sensory function. However, the effect of isolated changes in muscle or sensory function on the responses following stance perturbations cannot be determined experimentally since changes in muscle and sensory function occur simultaneously. Therefore, we used predictive simulations to estimate the effect of isolated changes in (rates of change in) maximal joint torques, functional base of support, and sensory noise on the response to backward platform translations. To evaluate whether these modeled changes in muscle and sensory function could explain the observed changes in strategy; simulated postural responses with a torque-driven double inverted pendulum model controlled using optimal state feedback were compared to measured postural responses in ten healthy young and ten healthy older adults. The experimentally observed peak hip angle during the response was significantly larger (5°) and the functional base of support was smaller (0.04 m) in the older than in the young adults but peak joint torques and rates of joint torque were similar during the recovery. The addition of noise to the sensed states in the predictive simulations could explain the observed increase in peak hip angle in the elderly, whereas changes in muscle function could not. Hence, our results suggest that strength training alone might be insufficient to improve postural control in elderly.status: publishe

    Differences in knee adduction moment between healthy subjects and patients with osteoarthritis depend on the knee axis definition

    No full text
    Objective: This study, firstly, investigates the effect of using an anatomical versus a functional axis of rotation (FAR) on knee adduction moment (KAM) in healthy subjects and patients with knee osteoarthritis (KOA). Secondly, this study reports KAM for models with FAR calculated using weight-bearing and non-weight-bearing motion. Design: Three musculoskeletal models were created using OpenSim with different knee axis of rotation (AR): transepicondylar axis (TEA); FAR calculated based on SARA algorithm using a weight-bearing motion (wFAR) and a non-weight-bearing motion (nwFAR). KAM were calculated during gait in fifty-nine subjects (n=20 healthy, n=16 early OA, n=23 established OA) for all models and groups. Results: Significant differences between the three groups in the first peak KAM were found when TEA was used (p = 0.038). However, these differences were no longer present when using FAR. In subjects with established OA, KAMs were significantly reduced when using nwFAR compared to TEA models but also compared to wFAR models. Conclusion: The presence of excessive KAM in subjects with established KOA showed to be dependent on the definition of the AR: anatomical versus functional. Therefore, caution should be accounted when comparing KAM in different studies on KOA patients. In patients with end-stage knee OA where increased passive knee laxity is likely to exist, the use of weight-bearing motions should be considered to avoid increased variability in the location and orientation of a FAR obtained from activities with only limited joint loading.publisher: Elsevier articletitle: Differences in knee adduction moment between healthy subjects and patients with osteoarthritis depend on the knee axis definition journaltitle: Gait & Posture articlelink: http://dx.doi.org/10.1016/j.gaitpost.2017.01.013 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved.status: publishe

    Shallow seeps and hydrothermal vents.

    No full text
    <p>Overview of nematode abundance and dominant species/genera data from shallow cold seeps and hydrothermal vents.</p
    corecore